Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca-Universitat Autònoma de Barcelona, Barcelona, Spain.
Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
FASEB J. 2019 Jun;33(6):7168-7179. doi: 10.1096/fj.201801591R. Epub 2019 Mar 8.
Polymerase γ catalytic subunit () gene encodes the enzyme responsible for mitochondrial DNA (mtDNA) synthesis. Mutations affecting are the most prevalent cause of mitochondrial disease because of defective mtDNA replication and lead to a wide spectrum of clinical phenotypes characterized by mtDNA deletions or depletion. Enhancing mitochondrial deoxyribonucleoside triphosphate (dNTP) synthesis effectively rescues mtDNA depletion in different models of defective mtDNA maintenance due to dNTP insufficiency. In this study, we studied mtDNA copy number recovery rates following ethidium bromide-forced depletion in quiescent fibroblasts from patients harboring mutations in different domains of POLG. Whereas control cells spontaneously recovered initial mtDNA levels, POLG-deficient cells experienced a more severe depletion and could not repopulate mtDNA. However, activation of deoxyribonucleoside (dN) salvage by supplementation with dNs plus -9-(2-hydroxy-3-nonyl) adenine (inhibitor of deoxyadenosine degradation) led to increased mitochondrial dNTP pools and promoted mtDNA repopulation in all tested -mutant cells independently of their specific genetic defect. The treatment did not compromise POLG fidelity because no increase in multiple deletions or point mutations was detected. Our study suggests that physiologic dNTP concentration limits the mtDNA replication rate. We thus propose that increasing mitochondrial dNTP availability could be of therapeutic interest for POLG deficiency and other conditions in which mtDNA maintenance is challenged.-Blázquez-Bermejo, C., Carreño-Gago, L., Molina-Granada, D., Aguirre, J., Ramón, J., Torres-Torronteras, J., Cabrera-Pérez, R., Martín, M. Á., Domínguez-González, C., de la Cruz, X., Lombès, A., García-Arumí, E., Martí, R., Cámara, Y. Increased dNTP pools rescue mtDNA depletion in human POLG-deficient fibroblasts.
聚合酶γ催化亚基()基因编码负责线粒体 DNA(mtDNA)合成的酶。影响的突变是线粒体疾病最常见的原因,因为 mtDNA 复制缺陷导致广泛的临床表型特征,包括 mtDNA 缺失或耗竭。增强线粒体脱氧核糖核苷三磷酸(dNTP)合成可有效挽救因 dNTP 不足导致不同 mtDNA 维持缺陷模型中的 mtDNA 耗竭。在这项研究中,我们研究了在静止的成纤维细胞中用溴化乙锭(ethidium bromide)诱导 mtDNA 耗竭后,携带 POLG 不同结构域突变的患者的 mtDNA 拷贝数恢复率。虽然对照细胞自发地恢复了初始 mtDNA 水平,但 POLG 缺陷细胞经历了更严重的耗竭,无法重新填充 mtDNA。然而,通过补充 dN 和 -9-(2-羟基-3-壬基)腺嘌呤(脱氧腺苷降解抑制剂)激活脱氧核苷(dN)补救,增加了线粒体 dNTP 池,并促进了所有测试的 - 突变细胞的 mtDNA 重新填充,而与它们特定的遗传缺陷无关。该治疗方法不会损害 POLG 的保真度,因为没有检测到多个缺失或点突变的增加。我们的研究表明,生理 dNTP 浓度限制了 mtDNA 复制率。因此,我们提出增加线粒体 dNTP 的可用性可能对 POLG 缺陷和其他 mtDNA 维持受到挑战的情况具有治疗意义。-Blázquez-Bermejo,C.,Carreño-Gago,L.,Molina-Granada,D.,Aguirre,J.,Ramón,J.,Torres-Torronteras,J.,Cabrera-Pérez,R.,Martín,M.Á.,Domínguez-González,C.,de la Cruz,X.,Lombès,A.,García-Arumí,E.,Martí,R.,Cámara,Y. 增加 dNTP 池可挽救人类 POLG 缺陷成纤维细胞中的 mtDNA 耗竭。