Suppr超能文献

脑网络的路由策略谱。

A spectrum of routing strategies for brain networks.

机构信息

Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States of America.

IU Network Institute, Indiana University, Bloomington, IN, United States of America.

出版信息

PLoS Comput Biol. 2019 Mar 8;15(3):e1006833. doi: 10.1371/journal.pcbi.1006833. eCollection 2019 Mar.

Abstract

Communication of signals among nodes in a complex network poses fundamental problems of efficiency and cost. Routing of messages along shortest paths requires global information about the topology, while spreading by diffusion, which operates according to local topological features, is informationally "cheap" but inefficient. We introduce a stochastic model for network communication that combines local and global information about the network topology to generate biased random walks on the network. The model generates a continuous spectrum of dynamics that converge onto shortest-path and random-walk (diffusion) communication processes at the limiting extremes. We implement the model on two cohorts of human connectome networks and investigate the effects of varying the global information bias on the network's communication cost. We identify routing strategies that approach a (highly efficient) shortest-path communication process with a relatively small global information bias on the system's dynamics. Moreover, we show that the cost of routing messages from and to hub nodes varies as a function of the global information bias driving the system's dynamics. Finally, we implement the model to identify individual subject differences from a communication dynamics point of view. The present framework departs from the classical shortest paths vs. diffusion dichotomy, unifying both models under a single family of dynamical processes that differ by the extent to which global information about the network topology influences the routing patterns of neural signals traversing the network.

摘要

在复杂网络中,节点之间的信号通信存在效率和成本方面的基本问题。沿着最短路径路由消息需要全局的拓扑结构信息,而扩散则根据局部拓扑特征进行信息传播,其效率较低但成本低。我们引入了一种用于网络通信的随机模型,该模型结合了网络拓扑的局部和全局信息,从而在网络上产生具有偏差的随机游走。该模型产生了一个连续的动力学谱,这些动力学谱在极限情况下收敛到最短路径和随机游走(扩散)通信过程。我们在两个人类连接体网络队列上实现了该模型,并研究了改变全局信息偏差对网络通信成本的影响。我们确定了路由策略,这些策略通过相对较小的全局信息偏差接近(高效)最短路径通信过程。此外,我们表明,从和到枢纽节点路由消息的成本随驱动系统动力学的全局信息偏差而变化。最后,我们实施该模型从通信动力学的角度来识别个体差异。该框架与经典的最短路径与扩散二分法不同,将两种模型统一在一个动态过程的单一家族中,该过程的区别在于网络拓扑结构的全局信息影响穿过网络的神经信号的路由模式的程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ca/6426276/1becc7bb3879/pcbi.1006833.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验