Suppr超能文献

一种用于网络数据分析的路径袋框架。

A bag-of-paths framework for network data analysis.

机构信息

Université catholique de Louvain, Belgium.

Université catholique de Louvain, Belgium; Aalto University, Department of Computer Science, Helsinki, Finland.

出版信息

Neural Netw. 2017 Jun;90:90-111. doi: 10.1016/j.neunet.2017.03.010. Epub 2017 Apr 3.

Abstract

This work develops a generic framework, called the bag-of-paths (BoP), for link and network data analysis. The central idea is to assign a probability distribution on the set of all paths in a network. More precisely, a Gibbs-Boltzmann distribution is defined over a bag of paths in a network, that is, on a representation that considers all paths independently. We show that, under this distribution, the probability of drawing a path connecting two nodes can easily be computed in closed form by simple matrix inversion. This probability captures a notion of relatedness, or more precisely accessibility, between nodes of the graph: two nodes are considered as highly related when they are connected by many, preferably low-cost, paths. As an application, two families of distances between nodes are derived from the BoP probabilities. Interestingly, the second distance family interpolates between the shortest-path distance and the commute-cost distance. In addition, it extends the Bellman-Ford formula for computing the shortest-path distance in order to integrate sub-optimal paths (exploration) by simply replacing the minimum operator by the soft minimum operator. Experimental results on semi-supervised classification tasks show that both of the new distance families are competitive with other state-of-the-art approaches. In addition to the distance measures studied in this paper, the bag-of-paths framework enables straightforward computation of many other relevant network measures.

摘要

本文提出了一种名为“路径袋”(Bag-of-Paths,BoP)的通用框架,用于链路和网络数据分析。其核心思想是为网络中的所有路径集分配概率分布。更确切地说,在网络中的路径袋上定义了一个 Gibbs-Boltzmann 分布,也就是说,这种表示方法独立考虑所有路径。我们表明,在这种分布下,通过简单的矩阵求逆,可以轻松地以闭式形式计算连接两个节点的路径的概率。该概率捕捉了图中节点之间的某种相关性或可访问性概念:当两个节点通过许多(最好是低成本)路径连接时,它们被认为具有高度相关性。作为一个应用,从 BoP 概率推导出了两类节点之间的距离。有趣的是,第二个距离家族在最短路径距离和通勤成本距离之间进行了插值。此外,它扩展了用于计算最短路径距离的 Bellman-Ford 公式,以便通过简单地用软最小运算符代替最小运算符,来整合次优路径(探索)。在半监督分类任务上的实验结果表明,这两种新的距离家族都与其他最先进的方法具有竞争力。除了本文研究的距离度量之外,路径袋框架还可以直接计算许多其他相关的网络度量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验