Suppr超能文献

简化含时密度泛函理论(sTD-DFT)框架中的非线性响应性质:激发态吸收光谱的评估。

Nonlinear-response properties in a simplified time-dependent density functional theory (sTD-DFT) framework: Evaluation of excited-state absorption spectra.

机构信息

Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstr. 4, 53115 Bonn, Germany.

出版信息

J Chem Phys. 2019 Mar 7;150(9):094112. doi: 10.1063/1.5080199.

Abstract

The energy conversion efficiency of organic solar cells seems crucial for a clean future. The design of new light-harvesting devices needs an in-depth understanding of their optical properties, including the excited-state absorption (ESA). In biology, the optical characterization of photochemical/physical processes happening in photosynthetic pigments and proteins can be difficult to interpret due to their structural complexities. Experimentally, an ultrafast transient absorption experiment can probe the excited state interaction with light. Quantum chemistry could play an important role to model the transient absorption spectrum of excited states. However, systems that need to be investigated can be way too large for existent software implementations. In this contribution, we present the first sTDA/sTD-DFT (simplified time-dependent density functional theory with and without Tamm Dancoff approximation) implementation to evaluate the ESA of molecules. The ultrafast ESA evaluation presents a negligible extra cost with respect to sTDA/sTD-DFT original schemes for standard ground state absorption. The sTD-DFT method shows ability to assign ESA spectra to the correct excited state. We showed that in the literature, wrong assignments were proposed as for the L34/L44 mixture and N-methylfulleropyrrolidine. In addition, sTDA/sTD-DFT-xTB tight-binding variants are also available, allowing the evaluation of ESA for systems of a few thousands of atoms, e.g., the spectrum of the photoactive yellow protein composed of 1931 atoms.

摘要

有机太阳能电池的能量转换效率对于清洁的未来似乎至关重要。新的光收集器件的设计需要深入了解其光学性质,包括激发态吸收(ESA)。在生物学中,由于光化学/物理过程中涉及的光合色素和蛋白质的结构复杂性,其光学特性的表征可能难以解释。在实验中,超快瞬态吸收实验可以探测激发态与光的相互作用。量子化学可以在模型化激发态的瞬态吸收光谱方面发挥重要作用。然而,需要研究的系统可能太大,无法使用现有的软件实现。在本研究中,我们提出了第一个 sTDA/sTD-DFT(简化的含时密度泛函理论,包括和不包括 Tamm-Dancoff 近似)方法来评估分子的 ESA。与标准的 sTDA/sTD-DFT 原始方案相比,超快 ESA 评估对原始方案的激发态吸收几乎没有额外的成本。sTD-DFT 方法能够将 ESA 光谱分配给正确的激发态。我们表明,在文献中,对于 L34/L44 混合物和 N-甲基富勒吡咯烷,提出了错误的分配。此外,还可以使用 sTDA/sTD-DFT-xTB 紧束缚变体,允许评估数千个原子的系统的 ESA,例如由 1931 个原子组成的光活性黄色蛋白的光谱。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验