Suppr超能文献

我们使用 SUV 匀化自动工具从临床肿瘤学实践中获得的不同扫描仪采集的 [F]FDG PET/CT 时,在分类治疗反应方面的失败频率是多少?

How Often Do We Fail to Classify the Treatment Response with [F]FDG PET/CT Acquired on Different Scanners? Data from Clinical Oncological Practice Using an Automatic Tool for SUV Harmonization.

机构信息

Nuclear Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168, Rome, Italy.

Nuclear Medicine Institute, Università Cattolica del Sacro Cuore, Rome, Italy.

出版信息

Mol Imaging Biol. 2019 Dec;21(6):1210-1219. doi: 10.1007/s11307-019-01342-5.

Abstract

PURPOSE

Tumor response evaluated by 2-deoxy-2-[F]fluoro-D-glucose ([F]FDG) positron emission tomography/computed tomography (PET/CT) with standardized uptake value (SUV) is questionable when pre- and post-treatment PET/CT are acquired on different scanners. The aims of our study, performed in oncological patients who underwent pre- and post-treatment [F]FDG PET/CT on different scanners, were (1) to evaluate whether EQ·PET, a proprietary SUV inter-exams harmonization tool, modifies the EORTC tumor response classification and (2) to assess which classification (harmonized and non-harmonized) better predicts clinical outcome.

PROCEDURES

We retrospectively identified 95 PET pairs (pre- and post-treatment) performed on different scanners (Biograph mCT, Siemens; GEMINI GXL, Philips) in 73 oncological patients (52F; 57.8 ± 16.3 years). An 8-mm Gaussian filter was applied for the Biograph protocol to meet the EANM/EARL harmonization standard; no filter was needed for GXL. SUVmax and SUVmaxEQ of the same target lesion in the pre- and post-treatment PET/CT were noted. For each PET pair, the metabolic response classification (responder/non-responder), derived from combining the EORTC response categories, was evaluated twice (with and without harmonization). In discordant cases, the association of each metabolic response classification with final clinical response assessment and survival data (2-year disease-free survival, DFS) was assessed.

RESULTS

On Biograph, SUVmaxEQ of all target lesions was significantly lower (p = 0.001) than SUVmax (8.5 ± 6.8 vs 12.5 ± 9.6; - 38.6 %). A discordance between the two metabolic response classifications (harmonized and non-harmonized) was found in 19/95 (20 %) PET pairs. In this subgroup (n = 19; mean follow-up, 33.9 ± 9 months), responders according to harmonized classification (n = 9) had longer DFS (47.5 months, 88.9 %) than responders (n = 10) according to non-harmonized classification (26.3 months, 50.0 %; p = 0.01). Moreover, harmonized classification showed a better association with final clinical response assessment (17/19 PET pairs).

CONCLUSIONS

The harmonized metabolic response classification is more associated with the final clinical response assessment, and it is able to better predict the DFS than the non-harmonized classification. EQ·PET is a useful harmonization tool for evaluating metabolic tumor response using different PET/CT scanners, also in different departments or for multicenter studies.

摘要

目的

当在不同的扫描仪上采集治疗前后的正电子发射断层扫描/计算机断层扫描(PET/CT)时,使用标准化摄取值(SUV)评估肿瘤反应存在疑问。我们的研究目的是在接受治疗前后在不同扫描仪上进行[F]FDG PET/CT 的肿瘤患者中进行,(1)评估专有 SUV 跨检查协调工具 EQ·PET 是否改变了 EORTC 肿瘤反应分类,以及(2)评估哪种分类(协调和非协调)更好地预测临床结果。

程序

我们回顾性地确定了 95 对 PET 对(治疗前后),这些 PET 对是在不同的扫描仪(Biograph mCT,西门子;GEMINI GXL,飞利浦)上对 73 名肿瘤患者(52 名女性;57.8 ± 16.3 岁)进行的。为了满足 EANM/EARL 协调标准,对 Biograph 方案应用了 8 毫米高斯滤波器;GXL 不需要滤波器。注意治疗前后 PET/CT 中同一靶病灶的 SUVmax 和 SUVmaxEQ。对于每对 PET,通过组合 EORTC 反应类别得出代谢反应分类(应答者/无应答者),并进行了两次评估(有和无协调)。在不一致的情况下,评估了每种代谢反应分类与最终临床反应评估和生存数据(2 年无病生存率,DFS)的关联。

结果

在 Biograph 上,所有靶病灶的 SUVmaxEQ 均显著低于 SUVmax(8.5 ± 6.8 与 12.5 ± 9.6;-38.6%)(p=0.001)。在 19/95(20%)对 PET 中发现了两种代谢反应分类(协调和非协调)之间的不一致。在该亚组(n=19;平均随访,33.9 ± 9 个月)中,根据协调分类(n=9)的应答者的 DFS 更长(47.5 个月,88.9%)比非协调分类(n=10)的应答者(26.3 个月,50.0%;p=0.01)。此外,协调分类与最终临床反应评估的相关性更好(19 对 PET 中有 17 对)。

结论

协调的代谢反应分类与最终临床反应评估的相关性更高,并且能够比非协调分类更好地预测 DFS。EQ·PET 是一种有用的协调工具,可用于使用不同的 PET/CT 扫描仪评估代谢肿瘤反应,也可用于不同部门或多中心研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验