Suppr超能文献

数字医疗中用于信息融合的数据协调:最新的系统评价、荟萃分析及未来研究方向

Data harmonisation for information fusion in digital healthcare: A state-of-the-art systematic review, meta-analysis and future research directions.

作者信息

Nan Yang, Ser Javier Del, Walsh Simon, Schönlieb Carola, Roberts Michael, Selby Ian, Howard Kit, Owen John, Neville Jon, Guiot Julien, Ernst Benoit, Pastor Ana, Alberich-Bayarri Angel, Menzel Marion I, Walsh Sean, Vos Wim, Flerin Nina, Charbonnier Jean-Paul, van Rikxoort Eva, Chatterjee Avishek, Woodruff Henry, Lambin Philippe, Cerdá-Alberich Leonor, Martí-Bonmatí Luis, Herrera Francisco, Yang Guang

机构信息

National Heart and Lung Institute, Imperial College London, London, Northern Ireland UK.

Department of Communications Engineering, University of the Basque Country UPV/EHU, Bilbao 48013, Spain.

出版信息

Inf Fusion. 2022 Jun;82:99-122. doi: 10.1016/j.inffus.2022.01.001.

Abstract

Removing the bias and variance of multicentre data has always been a challenge in large scale digital healthcare studies, which requires the ability to integrate clinical features extracted from data acquired by different scanners and protocols to improve stability and robustness. Previous studies have described various computational approaches to fuse single modality multicentre datasets. However, these surveys rarely focused on evaluation metrics and lacked a checklist for computational data harmonisation studies. In this systematic review, we summarise the computational data harmonisation approaches for multi-modality data in the digital healthcare field, including harmonisation strategies and evaluation metrics based on different theories. In addition, a comprehensive checklist that summarises common practices for data harmonisation studies is proposed to guide researchers to report their research findings more effectively. Last but not least, flowcharts presenting possible ways for methodology and metric selection are proposed and the limitations of different methods have been surveyed for future research.

摘要

消除多中心数据的偏差和方差一直是大规模数字医疗研究中的一项挑战,这需要具备整合从不同扫描仪和协议获取的数据中提取的临床特征的能力,以提高稳定性和鲁棒性。先前的研究描述了各种融合单模态多中心数据集的计算方法。然而,这些综述很少关注评估指标,并且缺乏计算数据协调研究的清单。在本系统综述中,我们总结了数字医疗领域中多模态数据的计算数据协调方法,包括基于不同理论的协调策略和评估指标。此外,还提出了一份总结数据协调研究常见做法的综合清单,以指导研究人员更有效地报告他们的研究结果。最后但同样重要的是,提出了展示方法和指标选择可能方式的流程图,并对不同方法的局限性进行了调查,以供未来研究参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed53/8878813/d411beadfa8a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验