Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin.
Mol Ecol. 2019 May;28(10):2459-2475. doi: 10.1111/mec.15072. Epub 2019 May 11.
Landscape features often shape patterns of gene flow and genetic differentiation in plant species. Populations that are small and isolated enough also become subject to genetic drift. We examined patterns of gene flow and differentiation among 12 floodplain populations of the selfing annual jewelweed (Impatiens capensis Meerb.) nested within four river systems and two major watersheds in Wisconsin, USA. Floodplain forests and marshes provide a model system for assessing the effects of habitat fragmentation within agricultural/urban landscapes and for testing whether rivers act to genetically connect dispersed populations. We generated a panel of 12,856 single nucleotide polymorphisms and assessed genetic diversity, differentiation, gene flow, and drift. Clustering methods revealed strong population genetic structure with limited admixture and highly differentiated populations (mean multilocus F = 0.32, F ' = 0.33). No signals of isolation by geographic distance or environment emerged, but alleles may flow along rivers given that genetic differentiation increased with river distance. Differentiation also increased in populations with fewer private alleles (R = 0.51) and higher local inbreeding (R = 0.22). Populations varied greatly in levels of local inbreeding (F = 0.2-0.9) and F increased in more isolated populations. These results suggest that genetic drift dominates other forces in structuring these Impatiens populations. In rapidly changing environments, species must migrate or genetically adapt. Habitat fragmentation limits both processes, potentially compromising the ability of species to persist in fragmented landscapes.
景观特征常常影响植物物种的基因流动和遗传分化模式。那些规模小且足够隔离的种群也会受到遗传漂变的影响。我们研究了美国威斯康星州四个河流系统和两个主要流域内的 12 个洪泛平原种群的基因流动和分化模式,这些种群是自交一年生凤仙花(Impatiens capensis Meerb.)的一部分。洪泛平原森林和沼泽为评估农业/城市景观中栖息地破碎化的影响以及测试河流是否能将分散的种群在基因上连接起来提供了一个模型系统。我们生成了一个包含 12856 个单核苷酸多态性的面板,并评估了遗传多样性、分化、基因流动和漂变。聚类方法揭示了强烈的种群遗传结构,混合程度有限,种群高度分化(平均多基因 F 为 0.32,F '为 0.33)。没有出现由地理距离或环境隔离的信号,但由于遗传分化随河流距离的增加而增加,等位基因可能沿着河流流动。分化在具有较少特有等位基因(R 为 0.51)和较高局部近亲繁殖(R 为 0.22)的种群中也增加了。种群的局部近亲繁殖水平差异很大(F 为 0.2-0.9),在更隔离的种群中 F 增加。这些结果表明,遗传漂变在塑造这些凤仙花种群结构方面占据主导地位。在快速变化的环境中,物种必须迁移或在基因上适应。栖息地破碎化限制了这两个过程,可能会损害物种在破碎化景观中生存的能力。