Suppr超能文献

用于从人体研究中获取的多通道超极化 C 成像数据的线圈组合方法。

Coil combination methods for multi-channel hyperpolarized C imaging data from human studies.

机构信息

Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA, United States.

Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA, United States.

出版信息

J Magn Reson. 2019 Apr;301:73-79. doi: 10.1016/j.jmr.2019.01.015. Epub 2019 Feb 1.

Abstract

Effective coil combination methods for human hyperpolarized C spectroscopy multi-channel data had been relatively unexplored. This study implemented and tested several coil combination methods, including (1) the sum-of-squares (SOS), (2) singular value decomposition (SVD), (3) Roemer method by using reference peak area as a sensitivity map (RefPeak), and (4) Roemer method by using ESPIRiT-derived sensitivity map (ESPIRiT). These methods were evaluated by numerical simulation, thermal phantom experiments, and human cancer patient studies. Overall, the SVD, RefPeak, and ESPIRiT methods demonstrated better accuracy and robustness than the SOS method. Extracting complex pyruvate signal provides an easy and excellent approximation of the coil sensitivity map while maintaining valuable phase information of the coil-combined data.

摘要

针对人体高极化 C 波谱多通道数据的有效线圈组合方法尚未得到充分研究。本研究实施并测试了几种线圈组合方法,包括(1)均方和(SOS),(2)奇异值分解(SVD),(3)使用参考峰面积作为灵敏度图的 Roemer 方法(RefPeak),以及(4)使用 ESPIRiT 衍生灵敏度图的 Roemer 方法(ESPIRiT)。这些方法通过数值模拟、热体模实验和人体癌症患者研究进行了评估。总体而言,SVD、RefPeak 和 ESPIRiT 方法比 SOS 方法具有更好的准确性和鲁棒性。提取复杂的丙酮酸信号在保持线圈组合数据有价值的相位信息的同时,提供了对线圈灵敏度图的简单而出色的逼近。

相似文献

1
Coil combination methods for multi-channel hyperpolarized C imaging data from human studies.
J Magn Reson. 2019 Apr;301:73-79. doi: 10.1016/j.jmr.2019.01.015. Epub 2019 Feb 1.
2
Robust hyperpolarized (13)C metabolic imaging with selective non-excitation of pyruvate (SNEP).
NMR Biomed. 2015 Aug;28(8):1021-30. doi: 10.1002/nbm.3346. Epub 2015 Jun 28.
3
Coil profile estimation strategies for parallel imaging with hyperpolarized C MRI.
Magn Reson Med. 2019 Dec;82(6):2104-2117. doi: 10.1002/mrm.27892. Epub 2019 Jul 11.
4
A general chemical shift decomposition method for hyperpolarized (13) C metabolite magnetic resonance imaging.
Magn Reson Chem. 2016 Aug;54(8):665-73. doi: 10.1002/mrc.4435. Epub 2016 Apr 5.
6
Joint image and field map estimation for multi-echo hyperpolarized C metabolic imaging of the heart.
Magn Reson Med. 2021 Jul;86(1):258-276. doi: 10.1002/mrm.28710. Epub 2021 Mar 3.
7
Simultaneous multislice acquisition without trajectory modification for hyperpolarized C experiments.
Magn Reson Med. 2018 Oct;80(4):1588-1594. doi: 10.1002/mrm.27136. Epub 2018 Feb 9.
8
Intensity correction for multichannel hyperpolarized 13C imaging of the heart.
Magn Reson Med. 2016 Feb;75(2):859-65. doi: 10.1002/mrm.26042. Epub 2015 Dec 1.
9
High-throughput hyperpolarized (13)C metabolic investigations using a multi-channel acquisition system.
J Magn Reson. 2015 Nov;260:20-7. doi: 10.1016/j.jmr.2015.08.025. Epub 2015 Sep 5.
10
Receiver phase alignment using fitted SVD derived sensitivities from routine prescans.
PLoS One. 2021 Aug 30;16(8):e0256700. doi: 10.1371/journal.pone.0256700. eCollection 2021.

引用本文的文献

1
Consensus recommendations for hyperpolarized [1-C]pyruvate MRI multi-center human studies.
Magn Reson Med. 2025 Oct;94(4):1386-1400. doi: 10.1002/mrm.30570. Epub 2025 Jun 16.
3
Translation of hyperpolarized [C,N]urea MRI for novel human brain perfusion studies.
Npj Imaging. 2025;3(1):11. doi: 10.1038/s44303-025-00073-3. Epub 2025 Mar 20.
7
A pharmacokinetic model for hyperpolarized C-pyruvate MRI when using metabolite-specific bSSFP sequences.
Magn Reson Med. 2024 Oct;92(4):1698-1713. doi: 10.1002/mrm.30142. Epub 2024 May 22.
9
Data Format Standardization and DICOM Integration for Hyperpolarized C MRI.
J Imaging Inform Med. 2024 Oct;37(5):2627-2634. doi: 10.1007/s10278-024-01100-2. Epub 2024 May 6.
10
Current methods for hyperpolarized [1-C]pyruvate MRI human studies.
Magn Reson Med. 2024 Jun;91(6):2204-2228. doi: 10.1002/mrm.29875. Epub 2024 Mar 5.

本文引用的文献

1
Metabolic Imaging of the Human Brain with Hyperpolarized C Pyruvate Demonstrates C Lactate Production in Brain Tumor Patients.
Cancer Res. 2018 Jul 15;78(14):3755-3760. doi: 10.1158/0008-5472.CAN-18-0221. Epub 2018 May 16.
2
Technique development of 3D dynamic CS-EPSI for hyperpolarized C pyruvate MR molecular imaging of human prostate cancer.
Magn Reson Med. 2018 Nov;80(5):2062-2072. doi: 10.1002/mrm.27179. Epub 2018 Mar 25.
3
3D hyperpolarized C-13 EPI with calibrationless parallel imaging.
J Magn Reson. 2018 Apr;289:92-99. doi: 10.1016/j.jmr.2018.02.011. Epub 2018 Feb 13.
4
Simultaneous multislice acquisition without trajectory modification for hyperpolarized C experiments.
Magn Reson Med. 2018 Oct;80(4):1588-1594. doi: 10.1002/mrm.27136. Epub 2018 Feb 9.
8
Assessing Prostate Cancer Aggressiveness with Hyperpolarized Dual-Agent 3D Dynamic Imaging of Metabolism and Perfusion.
Cancer Res. 2017 Jun 15;77(12):3207-3216. doi: 10.1158/0008-5472.CAN-16-2083. Epub 2017 Apr 20.
10
Hyperpolarized C, N -Urea MRI for assessment of the urea gradient in the porcine kidney.
Magn Reson Med. 2016 Dec;76(6):1895-1899. doi: 10.1002/mrm.26483. Epub 2016 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验