Sahin Sule, Haller Anna Bennett, Gordon Jeremy, Kim Yaewon, Hu Jasmine, Nickles Tanner, Dai Qing, Leynes Andrew P, Vigneron Daniel B, Wang Zhen Jane, Larson Peder E Z
UC Berkeley - UCSF Graduate Program in Bioengineering, 1700 4th St, San Francisco, CA 94158, USA; Radiology and Biomedical Imaging, University of California, San Francisco, 1700 4th St, San Francisco, CA 94158, USA.
UC Berkeley - UCSF Graduate Program in Bioengineering, 1700 4th St, San Francisco, CA 94158, USA; Radiology and Biomedical Imaging, University of California, San Francisco, 1700 4th St, San Francisco, CA 94158, USA.
J Magn Reson. 2025 Feb;371:107832. doi: 10.1016/j.jmr.2025.107832. Epub 2025 Jan 15.
Fitting rate constants to Hyperpolarized [1-C]Pyruvate (HP C13) MRI data is a promising approach for quantifying metabolism in vivo. Current methods typically fit each voxel of the dataset using a least-squares objective. With these methods, each voxel is considered independently, and the spatial relationships are not considered during fitting. In this work, we use a convolutional neural network, a U-Net, with convolutions across the 2D spatial dimensions to estimate pyruvate-to-lactate conversion rate, k, maps from dynamic HP C13 datasets. We designed a framework for creating simulated anatomically accurate brain data that matches typical HP C13 characteristics to provide large amounts of data for training with ground truth results. The U-Net is initially trained with the digital phantom data and then further trained with in vivo datasets for regularization. In simulation where ground-truth k maps are available, the U-Net outperforms voxel-wise fitting with and without spatiotemporal denoising, particularly for low SNR data. In vivo data was evaluated qualitatively, as no ground truth is available, and before regularization the U-Net predicted k maps appear oversmoothed. After further training with in vivo data, the resulting k maps appear more realistic. This study demonstrates how to use a U-Net to estimate rate constant maps for HP C13 data, including a comprehensive framework for generating a large amount of anatomically realistic simulated data and an approach for regularization. This simulation and architecture provide a foundation that can be built upon in the future for improved performance.
将速率常数拟合到超极化[1 - C]丙酮酸(HP C13)MRI数据是一种用于体内代谢定量的有前景的方法。当前方法通常使用最小二乘目标对数据集的每个体素进行拟合。使用这些方法时,每个体素是独立考虑的,在拟合过程中不考虑空间关系。在这项工作中,我们使用卷积神经网络(一种U-Net),通过在二维空间维度上进行卷积,从动态HP C13数据集中估计丙酮酸到乳酸的转化率k图。我们设计了一个框架来创建模拟的解剖学上准确的脑数据,该数据与典型的HP C13特征相匹配,以提供大量带有真实结果的数据用于训练。U-Net最初使用数字体模数据进行训练,然后使用体内数据集进行进一步训练以进行正则化。在有真实k图可用的模拟中,U-Net优于有和没有时空去噪的逐体素拟合,特别是对于低信噪比数据。由于没有真实值,对体内数据进行了定性评估,并且在正则化之前,U-Net预测的k图显得过度平滑。在使用体内数据进行进一步训练后,得到的k图看起来更真实。这项研究展示了如何使用U-Net来估计HP C13数据的速率常数图,包括一个用于生成大量解剖学上逼真的模拟数据的综合框架和一种正则化方法。这种模拟和架构为未来提高性能奠定了基础。