Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives, Centre national de la recherche scientifique, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France.
Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China.
Plant Cell. 2019 Apr;31(4):911-931. doi: 10.1105/tpc.18.00916. Epub 2019 Mar 8.
Photosynthetic organisms must sense and respond to fluctuating environmental conditions in order to perform efficient photosynthesis and to avoid the formation of dangerous reactive oxygen species. The excitation energy arriving at each photosystem permanently changes due to variations in the intensity and spectral properties of the absorbed light. Cyanobacteria, like plants and algae, have developed a mechanism, named "state transitions," that balances photosystem activities. Here, we characterize the role of the cytochrome complex and phosphorylation reactions in cyanobacterial state transitions using PCC 7942 and PCC 6803 as model organisms. First, large photosystem II (PSII) fluorescence quenching was observed in State II, a result that does not appear to be related to energy transfer from PSII to PSI (spillover). This membrane-associated process was inhibited by betaine, Suc, and high concentrations of phosphate. Then, using different chemicals affecting the plastoquinone pool redox state and cytochrome activity, we demonstrate that this complex is not involved in state transitions in or PCC6803. Finally, by constructing and characterizing 21 protein kinase and phosphatase mutants and using chemical inhibitors, we demonstrate that phosphorylation reactions are not essential for cyanobacterial state transitions. Thus, signal transduction is completely different in cyanobacterial and plant (green alga) state transitions.
为了高效地进行光合作用并避免产生危险的活性氧物质,光合生物必须能够感知和响应不断变化的环境条件。由于吸收光的强度和光谱特性的变化,到达每个光系统的激发能会永久改变。与植物和藻类一样,蓝细菌已经开发出一种名为“状态转变”的机制来平衡光合作用系统的活动。在这里,我们使用 PCC 7942 和 PCC 6803 作为模型生物,研究了细胞色素 复合物和磷酸化反应在蓝细菌状态转变中的作用。首先,在状态 II 中观察到较大的光系统 II(PSII)荧光猝灭,这一结果似乎与 PSII 到 PSI 的能量转移(溢散)无关。这个与膜相关的过程被甜菜碱、蔗糖和高浓度磷酸盐所抑制。然后,通过使用不同的化学物质影响质体醌池的氧化还原状态和细胞色素 活性,我们证明该复合物不参与 或 PCC6803 的状态转变。最后,通过构建和鉴定 21 种蛋白激酶和磷酸酶突变体并使用化学抑制剂,我们证明磷酸化反应对于蓝细菌状态转变并非必需。因此,在蓝细菌和植物(绿藻)状态转变中,信号转导是完全不同的。