Terentyev Vasily V
Institute of Basic Biological Problems, FRC PSCBR RAS, 142290 Pushchino, Russia.
Biophys Rev. 2022 Jul 18;14(4):871-886. doi: 10.1007/s12551-022-00979-x. eCollection 2022 Aug.
Conformational changes play an important role in the functioning of proteins and their complexes. This is also true for the pigment-protein super-complex of photosystem II (PSII). The data testify about the pH-induced macromolecular conformational changes in the water-oxidizing complex (WOC) on the donor side of PSII, the interaction between the spatial structure of WOC proteins and the distribution of cytochrome 559 redox-forms, and the electron transfer efficiency between Q and Q on the acceptor side of PSII. Changes in the protein environment near Q and Q can be observed after the removal of the bicarbonate ion associated with non-heme Fe or after the addition of herbicides binding to the Q site, which results in the suppression of the electron transfer in this site. The "locking" of the de novo assembled PSII in an inactive state until WOC activation is also accompanied by strong structural perturbations on the PSII acceptor and donor sides with the participation of Psb28 and Psb27 proteins. The triggers for degradation and replacement of damaged PSII proteins are structural changes induced by their oxidative modification and aggregation. Macromolecular changes in the antenna proteins underlie the activation of photoprotective non-photochemical quenching, which are induced by protonation of the lumenal residues of PsbS or/and Lhcsr3, as well as the phosphorylation of antenna proteins. Besides this, many smaller-scale conformational changes may occur in PSII. This review summarizes current knowledge about the possible conformational changes in proteins in the PSII super-complex and describes their proposed influence on PSII function.
构象变化在蛋白质及其复合物的功能发挥中起着重要作用。对于光系统II(PSII)的色素 - 蛋白质超复合物而言亦是如此。这些数据证实了PSII供体侧水氧化复合物(WOC)中pH诱导的大分子构象变化、WOC蛋白质空间结构与细胞色素559氧化还原形式分布之间的相互作用,以及PSII受体侧Q和Q之间的电子转移效率。在去除与非血红素铁相关的碳酸氢根离子后,或者在添加与Q位点结合的除草剂后,可以观察到Q和Q附近蛋白质环境的变化,这会导致该位点电子转移的抑制。从头组装的PSII在WOC激活之前处于非活性状态的“锁定”,也伴随着PSII受体和供体侧在Psb28和Psb27蛋白参与下的强烈结构扰动。受损PSII蛋白质降解和替换的触发因素是由其氧化修饰和聚集引起的结构变化。天线蛋白中的大分子变化是光保护非光化学猝灭激活的基础,这是由PsbS或/和Lhcsr3腔面残基的质子化以及天线蛋白的磷酸化诱导的。除此之外,PSII中可能会发生许多较小规模的构象变化。本综述总结了关于PSII超复合物中蛋白质可能的构象变化的当前知识,并描述了它们对PSII功能的推测影响。