Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX.
Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX.
Clin Genitourin Cancer. 2019 Jun;17(3):183-190. doi: 10.1016/j.clgc.2019.02.003. Epub 2019 Feb 16.
Prostate cancer (PCa) screening using serum prostate-specific antigen (PSA) testing has caused unnecessary biopsies and overdiagnosis owing to its low accuracy and reliability. Therefore, there is an increased interest in identifying better PCa biomarkers. Studies showed that trained dogs can discriminate patients with PCa from unaffected men by sniffing urine. We hypothesized that urinary volatile organic compounds (VOCs) may be the source of that odor and could be used to develop urinary VOC PCa diagnosis models.
Urine samples from 55 and 53 biopsy proven PCa-positive and -negative patients respectively were initially obtained for diagnostic model development. Urinary metabolites were analyzed by gas chromatography-mass spectrometry. A PCa diagnosis model was developed and validated using innovative statistical machine-learning techniques. A second set of samples (53 PCa-positive and 22 PCa-negative patients) were used to evaluate the previously developed PCa diagnosis model.
The analysis resulted in 254 and 282 VOCs for their significant association (P < .05) with either PCa-positive or -negative samples respectively. Regularized logistic regression analysis and the Firth method were then applied to predict PCa prevalence, resulting in a final model that contains 11 VOCs. Under cross-validation, the area under the receiver operating characteristic curve (AUC) for the final model was 0.92 (sensitivity, 0.96; specificity, 0.80). Further evaluation of the developed model using a testing cohort yielded an AUC of 0.86. As a comparison, the PSA-based diagnosis model only rendered an AUC of 0.54.
The study describes the development of a urinary VOC-based model for PCa detection.
由于血清前列腺特异性抗原(PSA)检测的前列腺癌(PCa)筛查准确性和可靠性较低,导致不必要的活检和过度诊断。因此,人们越来越关注寻找更好的 PCa 生物标志物。研究表明,经过训练的狗可以通过嗅尿液来区分 PCa 患者和未受影响的男性。我们假设尿液中的挥发性有机化合物(VOCs)可能是这种气味的来源,并可用于开发尿液 VOC PCa 诊断模型。
最初获得了 55 名和 53 名经活检证实的 PCa 阳性和阴性患者的尿液样本,用于诊断模型的开发。通过气相色谱-质谱法分析尿液代谢物。使用创新的统计机器学习技术开发和验证了 PCa 诊断模型。使用第二组样本(53 名 PCa 阳性和 22 名 PCa 阴性患者)评估先前开发的 PCa 诊断模型。
分析结果显示,分别有 254 种和 282 种 VOC 与 PCa 阳性或阴性样本显著相关(P <.05)。然后应用正则逻辑回归分析和 Firth 方法预测 PCa 的患病率,得出最终模型包含 11 种 VOC。在交叉验证下,最终模型的接收者操作特征曲线(ROC)下面积(AUC)为 0.92(敏感性为 0.96;特异性为 0.80)。使用测试队列进一步评估开发的模型,得到 AUC 为 0.86。相比之下,基于 PSA 的诊断模型仅产生 AUC 为 0.54。
本研究描述了一种基于尿液 VOC 的 PCa 检测模型的开发。