Suppr超能文献

使用高速容积显微镜对行为果蝇幼虫本体感觉系统动力学的特征描述。

Characterization of Proprioceptive System Dynamics in Behaving Drosophila Larvae Using High-Speed Volumetric Microscopy.

机构信息

Grueber Laboratory, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Neuroscience, Columbia University Irving Medical Center, New York, NY 10032, USA.

Laboratory for Functional Optical Imaging, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Electrical Engineering, Columbia University, New York, NY 10027, USA.

出版信息

Curr Biol. 2019 Mar 18;29(6):935-944.e4. doi: 10.1016/j.cub.2019.01.060. Epub 2019 Mar 7.

Abstract

Proprioceptors provide feedback about body position that is essential for coordinated movement. Proprioceptive sensing of the position of rigid joints has been described in detail in several systems; however, it is not known how animals with a flexible skeleton encode their body positions. Understanding how diverse larval body positions are dynamically encoded requires knowledge of proprioceptor activity patterns in vivo during natural movement. Here we used high-speed volumetric swept confocally aligned planar excitation (SCAPE) microscopy in crawling Drosophila larvae to simultaneously track the position, deformation, and intracellular calcium activity of their multidendritic proprioceptors. Most proprioceptive neurons were found to activate during segment contraction, although one subtype was activated by extension. During cycles of segment contraction and extension, different proprioceptor types exhibited sequential activity, providing a continuum of position encoding during all phases of crawling. This sequential activity was related to the dynamics of each neuron's terminal processes, and could endow each proprioceptor with a specific role in monitoring different aspects of body-wall deformation. We demonstrate this deformation encoding both during progression of contraction waves during locomotion as well as during less stereotyped, asymmetric exploration behavior. Our results provide powerful new insights into the body-wide neuronal dynamics of the proprioceptive system in crawling Drosophila, and demonstrate the utility of our SCAPE microscopy approach for characterization of neural encoding throughout the nervous system of a freely behaving animal.

摘要

本体感受器提供有关身体位置的反馈,这对于协调运动至关重要。刚性关节位置的本体感觉在几个系统中已经有详细描述;然而,尚不清楚具有柔性骨骼的动物如何编码它们的身体位置。要了解不同的幼虫身体位置如何动态编码,需要了解在自然运动过程中体内本体感受器的活动模式。在这里,我们在爬行的果蝇幼虫中使用高速体积扫频共焦面激发(SCAPE)显微镜同时跟踪它们的多树突本体感受器的位置、变形和细胞内钙活性。大多数本体感觉神经元在节段收缩时被激活,尽管有一种亚型在伸展时被激活。在节段收缩和伸展的循环中,不同的本体感受器类型表现出顺序活动,在爬行的所有阶段提供连续的位置编码。这种顺序活动与每个神经元末端过程的动力学有关,并使每个本体感受器具有监测体壁变形不同方面的特定作用。我们在运动过程中收缩波的进展期间以及在不太规范的、不对称的探索行为期间展示了这种变形编码。我们的结果为爬行果蝇本体感受系统的全身神经元动力学提供了有力的新见解,并证明了我们的 SCAPE 显微镜方法在描述自由行为动物整个神经系统中的神经编码的有用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/115a/6624193/1121128155ea/nihms-1522499-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验