Francis Jacob, Gibeily Caius R, Smith William V, Petropoulos Isabel S, Anderson Michael, Heitler William J, Prinz Astrid A, Pulver Stefan R
School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom.
Department of Biology, Emory University, Atlanta, Georgia, United States of America.
PLoS Biol. 2025 Apr 21;23(4):e3003094. doi: 10.1371/journal.pbio.3003094. eCollection 2025 Apr.
How do neural networks generate and regulate diversity and variability in motor outputs with finite cellular components? Here we examine this problem by exploring the role that inhibitory neuron motifs play in generating mixtures of motor programs in the segmentally organised Drosophila larval locomotor system. We developed a computational model that is constrained by experimental calcium imaging data. The model comprises single-compartment cells with a single voltage-gated calcium current, which are interconnected by graded excitatory and inhibitory synapses. Local excitatory and inhibitory neurons form conditional oscillators in each hemisegment. Surrounding architecture reflects key aspects of inter- and intrasegmental connectivity motifs identified in the literature. The model generates metachronal waves of activity that recapitulate key features of fictive forwards and backwards locomotion, as well as bilaterally asymmetric activity in anterior regions that represents fictive head sweeps. The statistics of inputs to competing command-like motifs, coupled with inhibitory motifs that detect activity across multiple segments generate network states that promote diversity in motor outputs, while at the same time preventing maladaptive overlap in motor programs. Overall, the model generates testable predictions for connectomics and physiological studies while providing a platform for uncovering how inhibitory circuit motifs underpin generation of diversity and variability in motor systems.
神经网络如何利用有限的细胞成分产生并调节运动输出的多样性和可变性?在这里,我们通过探究抑制性神经元基序在节段性组织的果蝇幼虫运动系统中产生运动程序混合体时所起的作用,来研究这个问题。我们开发了一个受实验性钙成像数据约束的计算模型。该模型由具有单个电压门控钙电流的单室细胞组成,这些细胞通过分级的兴奋性和抑制性突触相互连接。局部兴奋性和抑制性神经元在每个半节段中形成条件振荡器。周围的结构反映了文献中确定的节间和节内连接基序的关键方面。该模型产生的活动的相继波概括了虚拟向前和向后运动的关键特征,以及代表虚拟头部扫描的前部区域的双侧不对称活动。竞争指令样基序的输入统计数据,加上检测多个节段活动的抑制性基序,产生了促进运动输出多样性的网络状态,同时防止运动程序中出现适应不良的重叠。总体而言,该模型为连接组学和生理学研究产生了可测试的预测,同时提供了一个平台,用于揭示抑制性电路基序如何支撑运动系统中多样性和可变性的产生。