Suppr超能文献

机器学习人类淋巴母细胞中三维染色质组织的聚合物模型。

Machine learning polymer models of three-dimensional chromatin organization in human lymphoblastoid cells.

机构信息

Centre of New Technologies, University of Warsaw, Warsaw, Poland; Biology Department, University of Warsaw, Warsaw, Poland.

Centre of New Technologies, University of Warsaw, Warsaw, Poland; Faculty of Physics, University of Warsaw, Warsaw, Poland.

出版信息

Methods. 2019 Aug 15;166:83-90. doi: 10.1016/j.ymeth.2019.03.002. Epub 2019 Mar 7.

Abstract

We present machine learning models of human genome three-dimensional structure that combine one dimensional (linear) sequence specificity, epigenomic information, and transcription factor binding profiles, with the polymer-based biophysical simulations in order to explain the extensive long-range chromatin looping observed in ChIA-PET experiments for lymphoblastoid cells. Random Forest, Gradient Boosting Machine (GBM), and Deep Learning models were constructed and evaluated, when predicting high-resolution interactions within Topologically Associating Domains (TADs). The predicted interactions are consistent with the experimental long-read ChIA-PET interactions mediated by CTCF and RNAPOL2 for GM12878 cell line. The contribution of sequence information and chromatin state defined by epigenomic features to the prediction task is analyzed and reported, when using them separately and combined. Furthermore, we design three-dimensional models of chromatin contact domains (CCDs) using real (ChIA-PET) and predicted looping interactions. Initial results show a similarity between both types of 3D computational models (constructed from experimental or predicted interactions). This observation confirms the association between genome sequence, epigenomic and transcription factor profiles, and three-dimensional interactions.

摘要

我们提出了一种人类基因组三维结构的机器学习模型,该模型将一维(线性)序列特异性、表观基因组信息和转录因子结合谱与基于聚合物的生物物理模拟相结合,以解释在淋巴母细胞系的 ChIA-PET 实验中观察到的广泛的长距离染色质环。我们构建和评估了随机森林、梯度提升机(GBM)和深度学习模型,用于预测拓扑关联域(TAD)内的高分辨率相互作用。预测的相互作用与 GM12878 细胞系中由 CTCF 和 RNAPOL2 介导的实验长读 ChIA-PET 相互作用一致。当分别使用和组合使用序列信息和由表观基因组特征定义的染色质状态来进行预测任务时,我们分析并报告了它们的贡献。此外,我们使用真实(ChIA-PET)和预测的环相互作用来设计染色质接触域(CCD)的三维模型。初步结果表明,这两种类型的三维计算模型(由实验或预测的相互作用构建)之间存在相似性。这一观察结果证实了基因组序列、表观基因组和转录因子图谱与三维相互作用之间的关联。

相似文献

本文引用的文献

1
Predicting CTCF-mediated chromatin loops using CTCF-MP.使用 CTCF-MP 预测 CTCF 介导的染色质环。
Bioinformatics. 2018 Jul 1;34(13):i133-i141. doi: 10.1093/bioinformatics/bty248.
4
OpenMM 7: Rapid development of high performance algorithms for molecular dynamics.OpenMM 7:分子动力学高性能算法的快速开发。
PLoS Comput Biol. 2017 Jul 26;13(7):e1005659. doi: 10.1371/journal.pcbi.1005659. eCollection 2017 Jul.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验