Suppr超能文献

众志成城:麻疹病毒的多基因组传播。

Stronger together: Multi-genome transmission of measles virus.

机构信息

Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, United States; Mayo Graduate School, Mayo Clinic, Rochester, MN, 55905, United States.

Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, United States; Mayo Graduate School, Mayo Clinic, Rochester, MN, 55905, United States.

出版信息

Virus Res. 2019 May;265:74-79. doi: 10.1016/j.virusres.2019.03.007. Epub 2019 Mar 7.

Abstract

Measles virus (MeV) is an immunosuppressive, extremely contagious RNA virus that remains a leading cause of death among children. MeV is dual-tropic: it replicates first in lymphatic tissue, causing immunosuppression, and then in epithelial cells of the upper airways, accounting for extremely efficient contagion. Efficient contagion is counter-intuitive because the enveloped MeV particles are large and relatively unstable. However, MeV particles can contain multiple genomes, which can code for proteins with different functional characteristics. These proteins can cooperate to promote virus spread in tissue culture, prompting the question of whether multi-genome MeV transmission may promote efficient MeV spread also in vivo. Consistent with this hypothesis, in well-differentiated primary human airway epithelia large genome populations spread rapidly through intercellular pores. In another line of research, it was shown that distinct lymphocytic-adapted and epithelial-adapted genome populations exist; cyclical adaptation studies indicate that suboptimal variants in one environment may constitute a low frequency reservoir for adaptation to the other environment. Altogether, these observations suggest that, in humans, MeV spread relies on en bloc genome transmission, and that genomic diversity is instrumental for rapid MeV dissemination within hosts.

摘要

麻疹病毒(MeV)是一种免疫抑制性、高度传染性的 RNA 病毒,仍然是儿童死亡的主要原因。MeV 具有双重趋性:它首先在淋巴组织中复制,导致免疫抑制,然后在上呼吸道的上皮细胞中复制,这就是其极高传染性的原因。高传染性是违反直觉的,因为包膜 MeV 颗粒较大且相对不稳定。然而,MeV 颗粒可以包含多个基因组,这些基因组可以编码具有不同功能特征的蛋白质。这些蛋白质可以协同作用,促进病毒在组织培养中的传播,这就引出了一个问题,即多基因组 MeV 传播是否也能促进 MeV 在体内的有效传播。与这一假设一致的是,在分化良好的原代人呼吸道上皮细胞中,大基因组群体通过细胞间孔迅速传播。在另一项研究中,研究人员表明存在不同的淋巴细胞适应和上皮细胞适应的基因组群体;周期性适应研究表明,一种环境中的次优变体可能构成另一种环境适应的低频储备库。总的来说,这些观察结果表明,在人类中,MeV 的传播依赖于整组基因组的传播,基因组的多样性对于病毒在宿主内的快速传播至关重要。

相似文献

1
Stronger together: Multi-genome transmission of measles virus.
Virus Res. 2019 May;265:74-79. doi: 10.1016/j.virusres.2019.03.007. Epub 2019 Mar 7.
3
Cyclical adaptation of measles virus quasispecies to epithelial and lymphocytic cells: To V, or not to V.
PLoS Pathog. 2019 Feb 15;15(2):e1007605. doi: 10.1371/journal.ppat.1007605. eCollection 2019 Feb.
6
Virology. An exit strategy for measles virus.
Science. 2011 Dec 23;334(6063):1650-1. doi: 10.1126/science.1217378.
7
Measles virus exits human airway epithelia within dislodged metabolically active infectious centers.
PLoS Pathog. 2021 Aug 12;17(8):e1009458. doi: 10.1371/journal.ppat.1009458. eCollection 2021 Aug.
8
CD147/EMMPRIN acts as a functional entry receptor for measles virus on epithelial cells.
J Virol. 2010 May;84(9):4183-93. doi: 10.1128/JVI.02168-09. Epub 2010 Feb 10.

引用本文的文献

2
A Quantitative Fusion Assay to Study Measles Virus Entry.
Methods Mol Biol. 2024;2808:1-7. doi: 10.1007/978-1-0716-3870-5_1.
3
Quasispecies productivity.
Naturwissenschaften. 2024 Feb 19;111(2):11. doi: 10.1007/s00114-024-01897-6.
6
Collective fusion activity determines neurotropism of an en bloc transmitted enveloped virus.
Sci Adv. 2023 Jan 27;9(4):eadf3731. doi: 10.1126/sciadv.adf3731.
7
A Virus Is a Community: Diversity within Negative-Sense RNA Virus Populations.
Microbiol Mol Biol Rev. 2022 Sep 21;86(3):e0008621. doi: 10.1128/mmbr.00086-21. Epub 2022 Jun 23.
8
Spatio-temporal dynamics of intra-host variability in SARS-CoV-2 genomes.
Nucleic Acids Res. 2022 Feb 22;50(3):1551-1561. doi: 10.1093/nar/gkab1297.
9
Measles virus exits human airway epithelia within dislodged metabolically active infectious centers.
PLoS Pathog. 2021 Aug 12;17(8):e1009458. doi: 10.1371/journal.ppat.1009458. eCollection 2021 Aug.

本文引用的文献

1
Cyclical adaptation of measles virus quasispecies to epithelial and lymphocytic cells: To V, or not to V.
PLoS Pathog. 2019 Feb 15;15(2):e1007605. doi: 10.1371/journal.ppat.1007605. eCollection 2019 Feb.
3
Direct cell-to-cell transmission of respiratory viruses: The fast lanes.
PLoS Pathog. 2018 Jun 28;14(6):e1007015. doi: 10.1371/journal.ppat.1007015. eCollection 2018 Jun.
4
The Dual Tropism of Noroviruses.
J Virol. 2018 Jul 31;92(16). doi: 10.1128/JVI.01010-17. Print 2018 Aug 15.
5
The evolution and adaptation of A-to-I RNA editing.
PLoS Genet. 2017 Nov 28;13(11):e1007064. doi: 10.1371/journal.pgen.1007064. eCollection 2017 Nov.
6
Progress Toward Regional Measles Elimination - Worldwide, 2000-2016.
MMWR Morb Mortal Wkly Rep. 2017 Oct 27;66(42):1148-1153. doi: 10.15585/mmwr.mm6642a6.
7
The basic reproduction number (R) of measles: a systematic review.
Lancet Infect Dis. 2017 Dec;17(12):e420-e428. doi: 10.1016/S1473-3099(17)30307-9. Epub 2017 Jul 27.
8
APOBEC-mediated genomic alterations link immunity and viral infection during human papillomavirus-driven cervical carcinogenesis.
Biosci Trends. 2017 Sep 12;11(4):383-388. doi: 10.5582/bst.2017.01103. Epub 2017 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验