Suppr超能文献

针对短信微干预的身体活动反应个性化模型:控制系统工程方法的概念验证应用。

Personalized models of physical activity responses to text message micro-interventions: A proof-of-concept application of control systems engineering methods.

作者信息

Conroy David E, Hojjatinia Sarah, Lagoa Constantino M, Yang Chih-Hsiang, Lanza Stephanie T, Smyth Joshua M

机构信息

Department of Kinesiology and Human Development and Family Studies, The Pennsylvania State University; Department of Preventive Medicine, Northwestern University.

Department of Electrical Engineering, The Pennsylvania State University.

出版信息

Psychol Sport Exerc. 2019 Mar;41:172-180. doi: 10.1016/j.psychsport.2018.06.011. Epub 2018 Jun 28.

Abstract

OBJECTIVES

The conceptual models underlying physical activity interventions have been based largely on differences between more and less active people. Yet physical activity is a dynamic behavior, and such models are not sensitive to factors that regulate behavior at a momentary level or how people respond to individual attempts at intervening. We demonstrate how a control systems engineering approach can be applied to develop personalized models of behavioral responses to an intensive text message-based intervention.

DESIGN & METHOD: To establish proof-of-concept for this approach, 10 adults wore activity monitors for 16 weeks and received five text messages daily at random times. Message content was randomly selected from three types of messages designed to target (1) social-cognitive processes associated with increasing physical activity, (2) social-cognitive processes associated with reducing sedentary behavior, or (3) general facts unrelated to either physical activity or sedentary behavior. A dynamical systems model was estimated for each participant to examine the magnitude and timing of responses to each type of text message.

RESULTS

Models revealed heterogeneous responses to different message types that varied between people and between weekdays and weekends.

CONCLUSIONS

This proof-of-concept demonstration suggests that parameters from this model can be used to develop personalized algorithms for intervention delivery. More generally, these results demonstrate the potential utility of control systems engineering models for optimizing physical activity interventions.

摘要

目标

体育活动干预背后的概念模型主要基于运动较多和较少的人群之间的差异。然而,体育活动是一种动态行为,此类模型对在瞬间层面调节行为的因素或人们对个体干预尝试的反应并不敏感。我们展示了如何应用控制系统工程方法来开发针对基于短信的强化干预的行为反应个性化模型。

设计与方法

为了验证该方法的概念,10名成年人佩戴活动监测器16周,并每天在随机时间接收五条短信。短信内容从三种类型的短信中随机选择,旨在针对(1)与增加体育活动相关的社会认知过程,(2)与减少久坐行为相关的社会认知过程,或(3)与体育活动或久坐行为均无关的一般事实。为每位参与者估计一个动态系统模型,以检查对每种类型短信的反应程度和时间。

结果

模型显示对不同类型短信的反应存在异质性,且在不同人之间以及工作日和周末之间有所不同。

结论

这一概念验证表明,该模型的参数可用于开发个性化的干预算法。更普遍地说,这些结果证明了控制系统工程模型在优化体育活动干预方面的潜在效用。

相似文献

3
Assessing the impact of message relevance and frequency on physical activity change: A secondary data analysis from the random AIM trial.
Digit Health. 2024 May 22;10:20552076241255656. doi: 10.1177/20552076241255656. eCollection 2024 Jan-Dec.
5
Person-specific dose-finding for a digital messaging intervention to promote physical activity.
Health Psychol. 2021 Aug;40(8):502-512. doi: 10.1037/hea0001117.
7
Predicting Attrition in a Text-Based Nutrition Education Program: Survival Analysis of Text2BHealthy.
JMIR Mhealth Uhealth. 2019 Jan 21;7(1):e9967. doi: 10.2196/mhealth.9967.
9
Pilot study of psychotherapeutic text messaging for depression.
J Telemed Telecare. 2017 Aug;23(7):665-672. doi: 10.1177/1357633X16659955. Epub 2016 Jul 21.

引用本文的文献

1
The Specification of a Computational Model of Physical Activity Habit.
Exerc Sport Sci Rev. 2024 Jul 1;52(3):102-107. doi: 10.1249/JES.0000000000000340.
2
A control system model of capability-opportunity-motivation and behaviour (COM-B) framework for sedentary and physical activity behaviours.
Digit Health. 2024 Jun 7;10:20552076241255658. doi: 10.1177/20552076241255658. eCollection 2024 Jan-Dec.
4
Boosts for walking: how humorous messages increase brisk walking among cognitively fatigued individuals.
BMC Public Health. 2024 Jan 9;24(1):128. doi: 10.1186/s12889-023-17464-z.
8
An Overview of Innovative Approaches to Support Timely and Agile Health Communication Research and Practice.
Int J Environ Res Public Health. 2022 Nov 16;19(22):15073. doi: 10.3390/ijerph192215073.
9
The Physical Activity Messaging Framework (PAMF) and Checklist (PAMC): International consensus statement and user guide.
Int J Behav Nutr Phys Act. 2021 Dec 19;18(1):164. doi: 10.1186/s12966-021-01230-8.
10
Dynamic models of stress-smoking responses based on high-frequency sensor data.
NPJ Digit Med. 2021 Nov 23;4(1):162. doi: 10.1038/s41746-021-00532-2.

本文引用的文献

1
Adaptive step goals and rewards: a longitudinal growth model of daily steps for a smartphone-based walking intervention.
J Behav Med. 2018 Feb;41(1):74-86. doi: 10.1007/s10865-017-9878-3. Epub 2017 Sep 16.
2
Control Engineering Methods for the Design of Robust Behavioral Treatments.
IEEE Trans Control Syst Technol. 2017 May;25(3):979-990. doi: 10.1109/TCST.2016.2580661. Epub 2016 Jun 28.
5
Preventive Health Behavior Change Text Message Interventions: A Meta-analysis.
Am J Prev Med. 2017 Mar;52(3):391-402. doi: 10.1016/j.amepre.2016.10.042. Epub 2017 Jan 7.
6
A computational cognitive model of self-efficacy and daily adherence in mHealth.
Transl Behav Med. 2016 Dec;6(4):496-508. doi: 10.1007/s13142-016-0391-y.
7
Development of a dynamic computational model of social cognitive theory.
Transl Behav Med. 2016 Dec;6(4):483-495. doi: 10.1007/s13142-015-0356-6.
8
Advancing Models and Theories for Digital Behavior Change Interventions.
Am J Prev Med. 2016 Nov;51(5):825-832. doi: 10.1016/j.amepre.2016.06.013.
10
Semi-physical Identification and State Estimation of Energy Intake for Interventions to Manage Gestational Weight Gain.
Proc Am Control Conf. 2016 Jul;2016:1271-1276. doi: 10.1109/ACC.2016.7525092. Epub 2016 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验