Suppr超能文献

用于管理孕期体重增加的干预措施中能量摄入的半物理识别与状态估计

Semi-physical Identification and State Estimation of Energy Intake for Interventions to Manage Gestational Weight Gain.

作者信息

Guo Penghong, Rivera Daniel E, Downs Danielle S, Savage Jennifer S

机构信息

Control Systems Engineering Laboratory (CSEL), School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA.

Exercise Psychology Laboratory, Department of Kinesiology, Penn State University, University Park, PA, USA.

出版信息

Proc Am Control Conf. 2016 Jul;2016:1271-1276. doi: 10.1109/ACC.2016.7525092. Epub 2016 Aug 1.

Abstract

Excessive gestational weight gain (i.e., weight gain during pregnancy) is a significant public health concern, and has been the recent focus of novel, control systems-based interventions. This paper develops a control-oriented dynamical systems model based on a first-principles energy balance model from the literature, which is evaluated against participant data from a study targeted to obese and overweight pregnant women. The results indicate significant under-reporting of energy intake among the participant population. A series of approaches based on system identification and state estimation are developed in the paper to better understand and characterize the extent of under-reporting; these range from back-calculating energy intake from a closed-form of the energy balance model, to a constrained semi-physical identification approach that estimates the extent of systematic under-reporting in the presence of noise and possibly missing data. Additionally, we describe an adaptive algorithm based on Kalman filtering to estimate energy intake in real-time. The approaches are illustrated with data from both simulated and actual intervention participants.

摘要

孕期体重过度增加(即怀孕期间的体重增加)是一个重大的公共卫生问题,并且一直是基于新型控制系统干预措施的近期关注焦点。本文基于文献中的第一性原理能量平衡模型开发了一个面向控制的动态系统模型,并根据一项针对肥胖和超重孕妇的研究中的参与者数据对其进行评估。结果表明,参与者群体中能量摄入的报告存在显著不足。本文开发了一系列基于系统识别和状态估计的方法,以更好地理解和表征报告不足的程度;这些方法从根据能量平衡模型的封闭形式反推能量摄入,到一种约束半物理识别方法,该方法在存在噪声和可能缺失数据的情况下估计系统报告不足的程度。此外,我们描述了一种基于卡尔曼滤波的自适应算法,用于实时估计能量摄入。通过模拟和实际干预参与者的数据说明了这些方法。

相似文献

引用本文的文献

8
A Dynamical Systems Model of Intrauterine Fetal Growth.宫内胎儿生长的动态系统模型。
Math Comput Model Dyn Syst. 2018;24(6):661-687. doi: 10.1080/13873954.2018.1524387. Epub 2018 Oct 7.

本文引用的文献

2
A novel system dynamics model of female obesity and fertility.一种女性肥胖与生育力的新型系统动力学模型。
Am J Public Health. 2014 Jul;104(7):1240-6. doi: 10.2105/AJPH.2014.301898. Epub 2014 May 15.
7
Dynamic energy-balance model predicting gestational weight gain.动态能量平衡模型预测妊娠体重增加。
Am J Clin Nutr. 2012 Jan;95(1):115-22. doi: 10.3945/ajcn.111.024307. Epub 2011 Dec 14.
8
Diet induced thermogenesis.饮食诱导产热
Nutr Metab (Lond). 2004 Aug 18;1(1):5. doi: 10.1186/1743-7075-1-5.
10
Obesity and pregnancy: complications and cost.肥胖与妊娠:并发症及成本
Am J Clin Nutr. 2000 May;71(5 Suppl):1242S-8S. doi: 10.1093/ajcn/71.5.1242s.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验