Malyarenko Dariya I, Swanson Scott D, Konar Amaresha S, LoCastro Eve, Paudyal Ramesh, Liu Michael Z, Jambawalikar Sachin R, Schwartz Lawrence H, Shukla-Dave Amita, Chenevert Thomas L
Department of Radiology, University of Michigan Medical School, Ann Arbor, MI.
Departments of Medical Physics and.
Tomography. 2019 Mar;5(1):36-43. doi: 10.18383/j.tom.2018.00030.
Quantitative kurtosis phantoms are sought by multicenter clinical trials to establish accuracy and precision of quantitative imaging biomarkers on the basis of diffusion kurtosis imaging (DKI) parameters. We designed and evaluated precision, reproducibility, and long-term stability of a novel isotropic (i)DKI phantom fabricated using four families of chemicals based on vesicular and lamellar mesophases of liquid crystal materials. The constructed iDKI phantoms included negative control monoexponential diffusion materials to independently characterize noise and model-induced bias in quantitative kurtosis parameters. Ten test-retest DKI studies were performed on four scanners at three imaging centers over a six-month period. The tested prototype phantoms exhibited physiologically relevant apparent diffusion, D, and kurtosis, K, parameters ranging between 0.4 and 1.1 (×10 mm/s) and 0.8 and 1.7 (unitless), respectively. Measured kurtosis phantom K exceeded maximum fit model bias (0.1) detected for negative control (zero kurtosis) materials. The material-specific parameter precision [95% CI for D: 0.013-0.022(×10 mm/s) and for K: 0.009-0.076] derived from the test-retest analysis was sufficient to characterize thermal and temporal stability of the prototype DKI phantom through correlation analysis of inter-scan variability. The present study confirms a promising chemical design for stable quantitative DKI phantom based on vesicular mesophase of liquid crystal materials. Improvements to phantom preparation and temperature monitoring procedures have potential to enhance precision and reproducibility for future multicenter iDKI phantom studies.
多中心临床试验正在寻找定量峰度体模,以基于扩散峰度成像(DKI)参数建立定量成像生物标志物的准确性和精密度。我们设计并评估了一种新型各向同性(i)DKI体模的精密度、可重复性和长期稳定性,该体模使用基于液晶材料的泡状和层状中间相的四类化学物质制成。构建的iDKI体模包括负对照单指数扩散材料,以独立表征定量峰度参数中的噪声和模型诱导偏差。在六个月的时间里,在三个成像中心的四台扫描仪上进行了十次重测DKI研究。测试的原型体模表现出生理相关的表观扩散系数D和峰度K参数,分别在0.4至1.1(×10⁻³mm²/s)和0.8至1.7(无单位)之间。测量的峰度体模K超过了负对照(零峰度)材料检测到的最大拟合模型偏差(0.1)。通过重测分析得出的材料特异性参数精密度[D的95%置信区间:0.013 - 0.022(×10⁻³mm²/s),K的95%置信区间:0.009 - 0.076]足以通过扫描间变异性的相关性分析来表征原型DKI体模的热稳定性和时间稳定性。本研究证实了基于液晶材料泡状中间相的稳定定量DKI体模的一种有前景的化学设计。体模制备和温度监测程序的改进有可能提高未来多中心iDKI体模研究的精密度和可重复性。