Suppr超能文献

硫氧还蛋白系统减少枯草芽孢杆菌硫代辅酶合成过程中形成的蛋白质过硫化中间产物。

The Thioredoxin System Reduces Protein Persulfide Intermediates Formed during the Synthesis of Thio-Cofactors in Bacillus subtilis.

机构信息

Department of Chemistry , Wake Forest University , Winston-Salem , North Carolina 27106 , United States.

Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , Greensboro , North Carolina 27412 , United States.

出版信息

Biochemistry. 2019 Apr 9;58(14):1892-1904. doi: 10.1021/acs.biochem.9b00045. Epub 2019 Mar 18.

Abstract

The biosynthesis of Fe-S clusters and other thio-cofactors requires the participation of redox agents. A shared feature in these pathways is the formation of transient protein persulfides, which are susceptible to reduction by artificial reducing agents commonly used in reactions in vitro. These agents modulate the reactivity and catalytic efficiency of biosynthetic reactions and, in some cases, skew the enzymes' kinetic behavior, bypassing sulfur acceptors known to be critical for the functionality of these pathways in vivo. Here, we provide kinetic evidence for the selective reactivity of the Bacillus subtilis Trx (thioredoxin) system toward protein-bound persulfide intermediates. Our results demonstrate that the redox flux of the Trx system modulates the rate of sulfide production in cysteine desulfurase assays. Likewise, the activity of the Trx system is dependent on the rate of persulfide formation, suggesting the occurrence of coupled reaction schemes between both enzymatic systems in vitro. Inactivation of TrxA (thioredoxin) or TrxR (thioredoxin reductase) impairs the activity of Fe-S enzymes in B. subtilis, indicating the involvement of the Trx system in Fe-S cluster metabolism. Surprisingly, biochemical characterization of TrxA reveals that this enzyme is able to coordinate Fe-S species, resulting in the loss of its reductase activity. The inactivation of TrxA through the coordination of a labile cluster, combined with its proposed role as a physiological reducing agent in sulfur transfer pathways, suggests a model for redox regulation. These findings provide a potential link between redox regulation and Fe-S metabolism.

摘要

铁硫簇和其他硫辅因子的生物合成需要氧化还原试剂的参与。这些途径的一个共同特征是形成瞬态蛋白过硫化物,它们容易被体外反应中常用的人工还原剂还原。这些试剂调节生物合成反应的反应性和催化效率,并且在某些情况下,使酶的动力学行为发生偏离,绕过了已知对这些途径在体内功能至关重要的硫受体。在这里,我们提供了枯草芽孢杆菌 Trx(硫氧还蛋白)系统对结合蛋白的过硫化物中间体选择性反应性的动力学证据。我们的结果表明,Trx 系统的氧化还原通量调节半胱氨酸脱硫酶测定中硫化物产生的速率。同样,Trx 系统的活性取决于过硫化物形成的速率,这表明这两种酶系统在体外发生偶联反应方案。TrxA(硫氧还蛋白)或 TrxR(硫氧还蛋白还原酶)的失活会损害枯草芽孢杆菌中 Fe-S 酶的活性,表明 Trx 系统参与 Fe-S 簇代谢。令人惊讶的是,TrxA 的生化特性表明,该酶能够协调 Fe-S 物种,从而导致其还原酶活性丧失。通过不稳定簇的配位使 TrxA 失活,再加上其在硫转移途径中作为生理还原剂的拟议作用,为氧化还原调节提供了一个模型。这些发现为氧化还原调节和 Fe-S 代谢之间提供了潜在的联系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验