Suppr超能文献

硫氰酸酶可使细胞硫烷硫的积累降至最低,以避免细菌在硫化物氧化过程中出现二硫键应激。

Rhodaneses minimize the accumulation of cellular sulfane sulfur to avoid disulfide stress during sulfide oxidation in bacteria.

作者信息

Ran Mingxue, Li Qingbin, Xin Yufeng, Ma Shaohua, Zhao Rui, Wang Min, Xun Luying, Xia Yongzhen

机构信息

State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.

College of Life Sciences, Qufu Normal University, Qufu, 273165, China.

出版信息

Redox Biol. 2022 Jul;53:102345. doi: 10.1016/j.redox.2022.102345. Epub 2022 May 26.

Abstract

Heterotrophic bacteria and human mitochondria often use sulfide: quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO) to oxidize sulfide to sulfite and thiosulfate. Bioinformatic analysis showed that the genes encoding RHOD domains were widely presented in annotated sqr-pdo operons and grouped into three types: fused with an SQR domain, fused with a PDO domain, and dissociated proteins. Biochemical evidence suggests that RHODs facilitate the formation of thiosulfate and promote the reaction between inorganic polysulfide and glutathione to produce glutathione polysulfide. However, the physiological roles of RHODs during sulfide oxidation by SQR and PDO could only be tested in an RHOD-free host. To test this, 8 genes encoding RHOD domains in Escherichia coli MG1655 were deleted to produce E. coli RHOD-8K. The sqr and pdo genes from Cupriavidus pinatubonensis JMP134 were cloned into E. coli RHOD-8K. SQR contains a fused RHOD domain at the N-terminus. When the fused RHOD domain of SQR was inactivated, the cells oxidized sulfide into increased thiosulfate with the accumulation of cellular sulfane sulfur in comparison with cells containing the intact sqr and pdo. The complementation of dissociated DUF442 minimized the accumulation of cellular sulfane sulfur and reduced the production of thiosulfate. Further analysis showed that the fused DUF442 domain modulated the activity of SQR and prevented it from directly passing the produced sulfane sulfur to GSH. Whereas, the dissociated DUF442 enhanced the PDO activity by several folds. Both DUF442 forms minimized the accumulation of cellular sulfane sulfur, which spontaneously reacted with GSH to produce GSSG, causing disulfide stress during sulfide oxidation. Thus, RHODs may play multiple roles during sulfide oxidation.

摘要

异养细菌和人类线粒体通常利用硫化物

醌氧化还原酶(SQR)和过硫化物双加氧酶(PDO)将硫化物氧化为亚硫酸盐和硫代硫酸盐。生物信息学分析表明,编码RHOD结构域的基因广泛存在于已注释的sqr-pdo操纵子中,并分为三种类型:与SQR结构域融合、与PDO结构域融合以及解离蛋白。生化证据表明,RHODs促进硫代硫酸盐的形成,并促进无机多硫化物与谷胱甘肽之间的反应以产生谷胱甘肽多硫化物。然而,RHODs在SQR和PDO氧化硫化物过程中的生理作用只能在不含RHOD的宿主中进行测试。为了验证这一点,删除了大肠杆菌MG1655中8个编码RHOD结构域的基因,以产生大肠杆菌RHOD-8K。将来自皮纳图博贪铜菌JMP134的sqr和pdo基因克隆到大肠杆菌RHOD-8K中。SQR在N端含有一个融合的RHOD结构域。当SQR的融合RHOD结构域失活时,与含有完整sqr和pdo的细胞相比,细胞将硫化物氧化为增加的硫代硫酸盐,并伴有细胞硫烷硫的积累。解离的DUF442的互补作用使细胞硫烷硫的积累最小化,并减少了硫代硫酸盐的产生。进一步分析表明,融合的DUF442结构域调节SQR的活性,并阻止其直接将产生的硫烷硫传递给谷胱甘肽。而解离的DUF442使PDO活性提高了几倍。两种形式的DUF442都使细胞硫烷硫的积累最小化,硫烷硫会与谷胱甘肽自发反应生成GSSG,在硫化物氧化过程中引起二硫键应激。因此,RHODs在硫化物氧化过程中可能发挥多种作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e5a/9163753/78bb9c9670de/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验