Stimpson Katy H, Heitkamp Lauren N, Embry Aaron E, Dean Jesse C
Department of Health Sciences and Research, Medical University of South Carolina (MUSC), Charleston, SC, USA.
Department of Health Sciences and Research, Medical University of South Carolina (MUSC), Charleston, SC, USA; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
Gait Posture. 2019 May;70:136-140. doi: 10.1016/j.gaitpost.2019.03.003. Epub 2019 Mar 6.
Humans partially maintain gait stability by actively controlling step width based on the dynamic state of the pelvis - hereby defined as the "dynamics-dependent control of step width". Following a stroke, deficits in the accurate control of paretic leg motion may prevent use of this stabilization strategy.
Do chronic stroke survivors exhibit paretic-side deficits in the dynamics-dependent control of step width?
Twenty chronic stroke survivors participated in this cross-sectional study, walking on a treadmill at their self-selected (0.57 ± 0.25 m/s; mean ± s.d.) and fastest-comfortable (0.81 ± 0.30 m/s) speeds. To quantify the dynamics-dependent control of step width, we calculated the proportion of the step-by-step variance in step width that could be predicted from mediolateral pelvis dynamics, and used partial correlations to differentiate the relative effects of pelvis displacement and velocity. Secondarily, we calculated the mean and standard deviation of more traditional gait metrics: step width; lateral foot placement; and mediolateral margin of stability (MoS). We used repeated measures ANOVA to test for significant effects of leg (paretic vs. non-paretic) and speed (self-selected vs. fastest-comfortable) on these measures.
Relative to non-paretic steps, paretic steps exhibited a weaker (p ≤ 0.005) link between step width and pelvis dynamics, attributable to a decreased partial correlation between step width and pelvis displacement (p ≤ 0.001). Paretic steps were also placed more laterally (p < 0.0001), with a larger (p < 0.0001) and more variable (p = 0.003) MoS. The only effect of faster walking speeds was a narrower step width (p < 0.0001).
Pelvis displacement was less tightly linked to step width for paretic steps than for non-paretic steps, indicating a decrease in the step-by-step reactive control normally used to ensure mediolateral stability. Instead, stroke survivors placed their paretic leg farther laterally to ensure a larger MoS, behavior consistent with a greater reliance on a generalized feed-forward gait stabilization strategy.
人类通过根据骨盆的动态状态主动控制步幅来部分维持步态稳定性——在此定义为“步幅的动态依赖控制”。中风后,患侧腿部运动精确控制方面的缺陷可能会妨碍这种稳定策略的使用。
慢性中风幸存者在步幅的动态依赖控制方面是否存在患侧缺陷?
20名慢性中风幸存者参与了这项横断面研究,他们在跑步机上以自己选择的速度(0.57±0.25米/秒;平均值±标准差)和最快舒适速度(0.81±0.30米/秒)行走。为了量化步幅的动态依赖控制,我们计算了步幅中可根据骨盆内外侧动态预测的逐步步幅变化比例,并使用偏相关来区分骨盆位移和速度的相对影响。其次,我们计算了更传统步态指标的平均值和标准差:步幅;足部横向放置;以及内外侧稳定裕度(MoS)。我们使用重复测量方差分析来检验腿部(患侧与非患侧)和速度(自己选择的速度与最快舒适速度)对这些指标的显著影响。
与非患侧步幅相比,患侧步幅在步幅与骨盆动态之间的联系较弱(p≤0.005),这归因于步幅与骨盆位移之间的偏相关性降低(p≤0.001)。患侧步幅的放置也更偏向外侧(p<0.0001),MoS更大(p<0.0001)且更具变化性(p=0.003)。更快步行速度的唯一影响是步幅变窄(p<0.0001)。
与非患侧步幅相比,患侧步幅中骨盆位移与步幅的联系没那么紧密,这表明通常用于确保内外侧稳定性的逐步反应控制有所下降。相反,中风幸存者将患侧腿放置得更偏向外侧以确保更大的MoS,这种行为与更依赖广义前馈步态稳定策略一致。