Suppr超能文献

管状神经丘能增强斑马鱼(Danio rerio)的觅食行为。

Canal neuromasts enhance foraging in zebrafish (Danio rerio).

机构信息

Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, United States of America.

出版信息

Bioinspir Biomim. 2019 Apr 10;14(3):035003. doi: 10.1088/1748-3190/ab0eb5.

Abstract

Aquatic animals commonly sense flow using superficial neuromasts (SNs), which are receptors that extend from the body's surface. The lateral line of fishes is unique among these systems because it additionally possesses receptors, the canal neuromasts (CNs), that are recessed within a channel. The lateral line has inspired the development of engineered sensors and concepts in the analysis of flow fields for submersible navigation. The biophysics of CNs are known to be different from the SNs and thereby offer a distinct submodality. However, it is generally unclear whether CNs play a distinct role in behavior. We therefore tested whether CNs enhance foraging in the dark by zebrafish (Danio rerio), a behavior that we elicited with a vibrating rod. We found that juvenile fish, which have only SNs, bite at this rod at about one-third the rate and from as little as one-third the distance of adults for a high-frequency stimulus (50  <  f   <  100 Hz). We used novel techniques for manipulating the lateral line in adults to find that CNs offered only a modest benefit at a lower frequency (20 Hz) and that foraging was mediated entirely by cranial neuromasts. Consistent with our behavioral results, biophysical models predicted CNs to be more than an order of magnitude more sensitive than SNs at high frequencies. This enhancement helps to overcome the rapid spatial decay in high-frequency components in the flow around the stimulus. These findings contrast what has been previously established for fishes that are at least ten-times the length of zebrafish, which use trunk CNs to localize prey. Therefore, CNs generally enhance foraging, but in a manner that varies with the size of the fish and its prey. These results have the potential to improve our understanding of flow sensing in aquatic animals and engineered systems.

摘要

水生动物通常通过位于体表的浅感觉毛细胞(SNs)来感知水流。鱼类的侧线系统在这些系统中是独一无二的,因为它还拥有位于管道内的感觉毛细胞(CNs)感受器。侧线启发了工程传感器的发展,并为潜水导航中的流场分析提供了概念。已知 CNs 的生物物理学与 SNs 不同,因此提供了一种独特的亚模态。然而,CNs 是否在行为中发挥独特作用尚不清楚。因此,我们测试了 CNs 是否能增强斑马鱼(Danio rerio)的暗觅食行为,我们用振动棒来诱发这种行为。我们发现,只有 SNs 的幼年鱼对高频刺激(50<f<100Hz)的反应速度只有成年鱼的三分之一,反应距离也只有成年鱼的三分之一。我们使用了一种新的技术来操控成年鱼的侧线,发现 CNs 在低频(20Hz)时仅提供适度的益处,觅食完全由颅神经节介导。与我们的行为结果一致,生物物理模型预测 CNs 在高频时的灵敏度比 SNs 高出一个数量级以上。这种增强有助于克服刺激周围流场中高频成分的快速空间衰减。这些发现与以前对至少是斑马鱼十倍长的鱼类的研究结果形成对比,这些鱼类使用躯干 CNs 来定位猎物。因此,CNs 通常可以增强觅食行为,但方式因鱼的大小及其猎物而异。这些结果有可能提高我们对水生动物和工程系统中流感的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验