Suppr超能文献

斑马鱼在洄游过程中的尾鳍拍动同步需要功能完整的后侧线系统。

Tail Beat Synchronization during Schooling Requires a Functional Posterior Lateral Line System in Giant Danios, Devario aequipinnatus.

机构信息

Department of Biology, Tufts University, 200 Boston Ave Ste 4700, Medford, MA 02155, USA.

National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD, USA.

出版信息

Integr Comp Biol. 2021 Sep 8;61(2):427-441. doi: 10.1093/icb/icab071.

Abstract

Swimming in schools has long been hypothesized to allow fish to save energy. Fish must exploit the energy from the wakes of their neighbors for maximum energy savings, a feat that requires them to both synchronize their tail movements and stay in certain positions relative to their neighbors. To maintain position in a school, we know that fish use multiple sensory systems, mainly their visual and flow sensing lateral line system. However, how fish synchronize their swimming movements in a school is still not well understood. Here, we test the hypothesis that this synchronization may depend on functional differences in the two branches of the lateral line sensory system that detects water movements close to the fish's body. The anterior branch, located on the head, encounters largely undisturbed free-stream flow, while the posterior branch, located on the trunk and tail, encounters flow that has been affected strongly by the tail movement. Thus, we hypothesize that the anterior branch may be more important for regulating position within the school, while the posterior branch may be more important for synchronizing tail movements. Our study examines functional differences in the anterior and posterior lateral line in the structure and tail synchronization of fish schools. We used a widely available aquarium fish that schools, the giant danio, Devario equipinnatus. Fish swam in a large circular tank where stereoscopic videos recordings were used to reconstruct the 3D position of each individual within the school and to track tail kinematics to quantify synchronization. For one fish in each school, we ablated using cobalt chloride either the anterior region only, the posterior region only, or the entire lateral line system. We observed that ablating any region of the lateral line system causes fish to swim in a "box" or parallel swimming formation, which was different from the diamond formation observed in normal fish. Ablating only the anterior region did not substantially reduce tail beat synchronization but ablating only the posterior region caused fish to stop synchronizing their tail beats, largely because the tail beat frequency increased dramatically. Thus, the anterior and posterior lateral line system appears to have different behavioral functions in fish. Most importantly, we showed that the posterior lateral line system played a major role in determining tail beat synchrony in schooling fish. Without synchronization, swimming efficiency decreases, which can have an impact on the fitness of the individual fish and group.

摘要

长期以来,人们一直假设在学校游泳可以让鱼类节省能量。鱼类必须利用邻居的尾流能量来实现最大的节能效果,这一壮举要求它们协调尾鳍的运动,并保持相对于邻居的特定位置。为了在群体中保持位置,我们知道鱼类会使用多种感觉系统,主要是视觉和侧线水流感觉系统。然而,鱼类如何在群体中协调它们的游泳动作仍然不太清楚。在这里,我们测试了一个假设,即这种同步可能取决于侧线感觉系统两个分支的功能差异,该系统检测靠近鱼体的水的运动。位于头部的前分支遇到的是基本未受干扰的主流流,而位于躯干和尾部的后分支遇到的是受尾鳍运动强烈影响的流。因此,我们假设前分支可能更重要的是调节群体内的位置,而后分支可能更重要的是协调尾鳍的运动。我们的研究检查了前侧线和后侧线在鱼类群体结构和尾鳍同步中的功能差异。我们使用了一种广泛存在的水族馆鱼类,即巨型大鳍脂鲤,Devario equipinnatus。鱼在一个大型圆形水箱中游泳,立体视频记录用于重建群体中每个个体的三维位置,并跟踪尾鳍运动以量化同步性。对于每个群体中的一条鱼,我们使用氯化钴分别消融前区、后区或整个侧线系统。我们观察到,消融侧线系统的任何区域都会导致鱼以“盒状”或平行游泳的形式游动,这与正常鱼观察到的菱形形成不同。仅消融前区不会显著降低尾鳍拍打同步性,但仅消融后区会导致鱼停止同步尾鳍拍打,主要是因为尾鳍拍打频率急剧增加。因此,前侧线和后侧线系统似乎在鱼类中具有不同的行为功能。最重要的是,我们表明后侧线系统在决定群体鱼类的尾鳍同步方面起着主要作用。没有同步性,游泳效率会降低,这会对个体鱼和群体的适应性产生影响。

相似文献

2
Energy conservation by collective movement in schooling fish.
Elife. 2024 Feb 20;12:RP90352. doi: 10.7554/eLife.90352.
3
The role of vision and lateral line sensing for schooling in giant danios (Devario aequipinnatus).
J Exp Biol. 2024 May 15;227(10). doi: 10.1242/jeb.246887. Epub 2024 May 28.
4
In-line swimming dynamics revealed by fish interacting with a robotic mechanism.
Elife. 2023 Feb 6;12:e81392. doi: 10.7554/eLife.81392.
5
The effects of lateral line ablation and regeneration in schooling giant danios.
J Exp Biol. 2018 Apr 25;221(Pt 8):jeb175166. doi: 10.1242/jeb.175166.
6
How does school size affect tail beat frequency in turbulent water?
Comp Biochem Physiol A Mol Integr Physiol. 2018 Apr;218:63-69. doi: 10.1016/j.cbpa.2018.01.015. Epub 2018 Feb 1.
7
Simple phalanx pattern leads to energy saving in cohesive fish schooling.
Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):9599-9604. doi: 10.1073/pnas.1706503114. Epub 2017 Aug 24.
8
Collective movement of schooling fish reduces the costs of locomotion in turbulent conditions.
PLoS Biol. 2024 Jun 6;22(6):e3002501. doi: 10.1371/journal.pbio.3002501. eCollection 2024 Jun.
9
On the energetics and stability of a minimal fish school.
PLoS One. 2019 Aug 28;14(8):e0215265. doi: 10.1371/journal.pone.0215265. eCollection 2019.
10
Vortex phase matching as a strategy for schooling in robots and in fish.
Nat Commun. 2020 Oct 26;11(1):5408. doi: 10.1038/s41467-020-19086-0.

引用本文的文献

1
Beyond planar: fish schools adopt ladder formations in 3D.
Sci Rep. 2025 Jun 27;15(1):20249. doi: 10.1038/s41598-025-06150-2.
2
The role of hydrodynamics in collective motions of fish schools and bioinspired underwater robots.
J R Soc Interface. 2023 Oct;20(207):20230357. doi: 10.1098/rsif.2023.0357. Epub 2023 Oct 25.
3
Illuminance-tuned collective motion in fish.
Commun Biol. 2023 May 31;6(1):585. doi: 10.1038/s42003-023-04861-8.
4
Reconstructing the pressure field around swimming fish using a physics-informed neural network.
J Exp Biol. 2023 Apr 15;226(8). doi: 10.1242/jeb.244983. Epub 2023 Apr 27.
5
Hydrodynamical Fingerprint of a Neighbour in a Fish Lateral Line.
Front Robot AI. 2022 Feb 11;9:825889. doi: 10.3389/frobt.2022.825889. eCollection 2022.

本文引用的文献

1
Rheotaxis revisited: a multi-behavioral and multisensory perspective on how fish orient to flow.
J Exp Biol. 2020 Dec 7;223(Pt 23):jeb223008. doi: 10.1242/jeb.223008.
2
The sensory basis of schooling by intermittent swimming in the rummy-nose tetra ().
Proc Biol Sci. 2020 Oct 28;287(1937):20200568. doi: 10.1098/rspb.2020.0568.
3
Canal neuromasts enhance foraging in zebrafish (Danio rerio).
Bioinspir Biomim. 2019 Apr 10;14(3):035003. doi: 10.1088/1748-3190/ab0eb5.
4
Potential role of the anterior lateral line in sound localization in toadfish ().
J Exp Biol. 2018 Nov 26;221(Pt 23):jeb180679. doi: 10.1242/jeb.180679.
5
Efficient collective swimming by harnessing vortices through deep reinforcement learning.
Proc Natl Acad Sci U S A. 2018 Jun 5;115(23):5849-5854. doi: 10.1073/pnas.1800923115. Epub 2018 May 21.
6
The effects of lateral line ablation and regeneration in schooling giant danios.
J Exp Biol. 2018 Apr 25;221(Pt 8):jeb175166. doi: 10.1242/jeb.175166.
7
Simple phalanx pattern leads to energy saving in cohesive fish schooling.
Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):9599-9604. doi: 10.1073/pnas.1706503114. Epub 2017 Aug 24.
8
A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish.
Nature. 2017 Jul 27;547(7664):445-448. doi: 10.1038/nature23014. Epub 2017 Jul 12.
9
Fish prey change strategy with the direction of a threat.
Proc Biol Sci. 2017 Jun 28;284(1857). doi: 10.1098/rspb.2017.0393.
10
Morphology and hydro-sensory role of superficial neuromasts in schooling behaviour of yellow-eyed mullet (Aldrichetta forsteri).
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2017 Oct;203(10):807-817. doi: 10.1007/s00359-017-1192-6. Epub 2017 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验