Suppr超能文献

基于概率框架的胸部计划 CT 多图谱心脏分割的可行性。

Feasibility of multi-atlas cardiac segmentation from thoracic planning CT in a probabilistic framework.

机构信息

School of Physics, Institute of Medical Physics, University of Sydney, Sydney, Australia. Ingham Institute for Applied Medical Research, Liverpool, Australia. Author to whom all correspondence should be addressed.

出版信息

Phys Med Biol. 2019 Apr 8;64(8):085006. doi: 10.1088/1361-6560/ab0ea6.

Abstract

Toxicity to cardiac and coronary structures is an important late morbidity for patients undergoing left-sided breast radiotherapy. Many current studies have relied on estimates of cardiac doses assuming standardised anatomy, with a calculated increase in relative risk of 7.4% per Gy (mean heart dose). To provide individualised estimates for dose, delineation of various cardiac structures on patient images is required. Automatic multi-atlas based segmentation can provide a consistent, robust solution, however there are challenges to this method. We are aiming to develop and validate a cardiac atlas and segmentation framework, with a focus on the limitations and uncertainties in the process. We present a probabilistic approach to segmentation, which provides a simple method to incorporate inter-observer variation, as well as a useful tool for evaluating the accuracy and sources of error in segmentation. A dataset consisting of 20 planning computed tomography (CT) images of Australian breast cancer patients with delineations of 17 structures (including whole heart, four chambers, coronary arteries and valves) was manually contoured by three independent observers, following a protocol based on a published reference atlas, with verification by a cardiologist. To develop and validate the segmentation framework a leave-one-out cross-validation strategy was implemented. Performance of the automatic segmentations was evaluated relative to inter-observer variability in manually-derived contours; measures of volume and surface accuracy (Dice similarity coefficient (DSC) and mean absolute surface distance (MASD), respectively) were used to compare automatic segmentation to the consensus segmentation from manual contours. For the whole heart, the resulting segmentation achieved a DSC of [Formula: see text], with a MASD of [Formula: see text] mm. Quantitative results, together with the analysis of probabilistic labelling, indicate the feasibility of accurate and consistent segmentation of larger structures, whereas this is not the case for many smaller structures, where a major limitation in segmentation accuracy is the inter-observer variability in manual contouring.

摘要

左侧乳房放疗后,心脏和冠状动脉结构的毒性是患者重要的迟发性疾病。许多目前的研究都依赖于标准解剖结构下的心脏剂量估计值,每 Gy(平均心脏剂量)的相对风险增加了 7.4%。为了提供剂量的个体化估计,需要在患者图像上描绘各种心脏结构。基于自动多图谱的分割可以提供一致、稳健的解决方案,但该方法存在挑战。我们旨在开发和验证心脏图谱和分割框架,重点关注该过程的局限性和不确定性。我们提出了一种分割的概率方法,该方法提供了一种简单的方法来纳入观察者间的变化,并且是评估分割准确性和误差源的有用工具。一个由 20 个澳大利亚乳腺癌患者的计划计算机断层扫描(CT)图像组成的数据集,由三位独立的观察者手动描绘了 17 个结构(包括整个心脏、四个腔室、冠状动脉和瓣膜),该方法遵循基于已发表参考图谱的协议,并由心脏病专家进行验证。为了开发和验证分割框架,实施了一种留一交叉验证策略。自动分割的性能相对于手动衍生轮廓的观察者间变异性进行评估;使用体积和表面准确性的度量(分别为骰子相似系数(DSC)和平均绝对表面距离(MASD))将自动分割与手动轮廓的共识分割进行比较。对于整个心脏,得到的分割达到了 DSC[公式:见文本],MASD[公式:见文本]mm。定量结果,以及概率标记的分析,表明了对较大结构进行准确和一致分割的可行性,而对于许多较小结构,分割准确性的主要限制是手动轮廓的观察者间变异性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验