Suppr超能文献

绿地暴露测量中的时空上下文不确定性:探索归一化植被指数的时间序列。

Spatiotemporal Contextual Uncertainties in Green Space Exposure Measures: Exploring a Time Series of the Normalized Difference Vegetation Indices.

机构信息

Department of Human Geography and Spatial Planning, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands.

出版信息

Int J Environ Res Public Health. 2019 Mar 8;16(5):852. doi: 10.3390/ijerph16050852.

Abstract

Environmental health studies on green space may be affected by contextual uncertainties originating from the temporality of environmental exposures and by how the spatial context is delimitated. The Normalized Difference Vegetation Index (NDVI) is frequently used as an outdoor green space metric capturing the chlorophyll content in the vegetation canopy. This study assessed (1) whether residential NDVI exposures vary over time, and (2) how these time series of NDVI scores vary across spatial context delimitations. Multi-temporal NDVI data for the period 2006⁻2017 for the Netherlands were obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite platform. Annual NDVI exposures were determined across multiple buffer sizes (i.e., 300, 600, and 1000 m) centered on a random sample of 10,000 Dutch residential addresses. Besides the descriptive statistics, pairwise Wilcoxon tests and Fligner⁻Killeen tests were used to determine mean and variance differences in annual NDVI scores across buffer widths. Heat maps visualized the correlation matrices. Significance levels were adjusted for multiple hypotheses testing. The results indicated that annual NDVI metrics were significantly correlated but their magnitude varied notably between 0.60 to 0.97. Numerous mean and variance differences in annual NDVI exposures were significant. It seems that the disparate buffers (i.e., 300 and 1000 m) were less strongly correlated, possibly because variance heterogeneity is reduced in larger buffers. These results have been largely consistent over the years and have passed Monte Carlo-based sensitivity tests. In conclusion, besides assessing green space exposures along different buffer sizes, our findings suggest that green space⁻health studies should employ NDVI data that are well-aligned with epidemiological data. Even an annual temporal incompatibility may obscure or distort green space⁻health associations. Both strategies may diminish contextual uncertainties in environmental exposure assessments.

摘要

环境健康研究中的绿色空间可能会受到环境暴露的时间性以及空间范围界定方式的影响。归一化差异植被指数(NDVI)常用于衡量室外绿色空间,它可以捕捉植被冠层中的叶绿素含量。本研究评估了(1)居民 NDVI 暴露是否随时间变化,以及(2)这些 NDVI 得分时间序列在不同空间范围界定下如何变化。本研究使用了来自中分辨率成像光谱仪(MODIS)卫星平台的 2006-2017 年期间的多时相 NDVI 数据。以荷兰一万个随机住宅地址为中心,确定了不同缓冲区大小(300、600 和 1000 米)的年度 NDVI 暴露情况。除了描述性统计外,还使用了成对的 Wilcoxon 检验和 Fligner-Killeen 检验来确定不同缓冲区宽度的年度 NDVI 得分的均值和方差差异。热图可视化了相关矩阵。通过对多个假设进行检验,调整了显著性水平。结果表明,年度 NDVI 指标具有显著相关性,但它们的幅度在 0.60 到 0.97 之间变化很大。年度 NDVI 暴露的许多均值和方差差异具有统计学意义。不同的缓冲区(即 300 和 1000 米)之间的相关性较弱,这可能是因为较大缓冲区中的方差异质性降低了。这些结果多年来基本一致,并且通过了基于蒙特卡罗的敏感性测试。总之,除了评估不同缓冲区大小的绿色空间暴露情况外,我们的研究结果表明,绿色空间-健康研究应使用与流行病学数据匹配良好的 NDVI 数据。即使是年度时间上的不兼容也可能会掩盖或扭曲绿色空间-健康关联。这两种策略都可能减少环境暴露评估中的上下文不确定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e37b/6427170/72a96ceb7f6b/ijerph-16-00852-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验