文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

外暴露组学研究中的地理不确定性:一种减少暴露错误分类的多尺度方法。

Geographic uncertainties in external exposome studies: A multi-scale approach to reduce exposure misclassification.

机构信息

Department of Human Geography and Spatial Planning, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands.

Department of Human Geography and Spatial Planning, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands; Department of Geography and Resource Management and Institute of Space and Earth Information Science, Chinese University of Hong Kong, Hong Kong, China.

出版信息

Sci Total Environ. 2024 Jan 1;906:167637. doi: 10.1016/j.scitotenv.2023.167637. Epub 2023 Oct 9.


DOI:10.1016/j.scitotenv.2023.167637
PMID:37816406
Abstract

BACKGROUND: Many studies on environment-health associations have emphasized that the selected buffer size (i.e., the scale of the geographic context when exposures are assigned at people's address location) may affect estimated effect sizes. However, there is limited methodological progress in addressing these buffer size-related uncertainties. AIM: We aimed to 1) develop a statistical multi-scale approach to address buffer-related scale effects in cohort studies, and 2) investigate how environment-health associations differ between our multi-scale approach and ad hoc selected buffer sizes. METHODS: We used lacunarity analyses to determine the largest meaningful buffer size for multiple high-resolution exposure surfaces (i.e., fine particulate matter [PM], noise, and the normalized difference vegetation index [NDVI]). Exposures were linked to 7.7 million Dutch adults at their home addresses. We assigned exposure estimates based on buffers with fine-grained distance increments until the lacunarity-based upper limit was reached. Bayesian Cox model averaging addressed geographic uncertainties in the estimated exposure effect sizes within the exposure-specific upper buffer limits on mortality. Z-tests assessed statistical differences between averaged effect sizes and those obtained through pre-selected 100, 300, 1200, and 1500 m buffers. RESULTS: The estimated lacunarity curves suggested exposure-specific upper buffer size limits; the largest was for NDVI (960 m), followed by noise (910 m) and PM (450 m). We recorded 845,229 deaths over eight years of follow-up. Our multi-scale approach indicated that higher values of NDVI were health-protectively associated with mortality risk (hazard ratio [HR]: 0.917, 95 % confidence interval [CI]: 0.886-0.948). Increased noise exposure was associated with an increased risk of mortality (HR: 1.003, 95 % CI: 1.002-1.003), while PM showed null associations (HR:0.998, 95 % CI: 0.997-1.000). Effect sizes of NDVI and noise differed significantly across the averaged and prespecified buffers (p < 0.05). CONCLUSIONS: Geographic uncertainties in residential-based exposure assessments may obscure environment-health associations or risk spurious ones. Our multi-scale approach produced more consistent effect estimates and mitigated contextual uncertainties.

摘要

背景:许多关于环境-健康关联的研究强调,所选缓冲区大小(即,在将暴露分配到人们的地址位置时使用的地理范围的大小)可能会影响估计的效应大小。然而,在解决这些与缓冲区大小相关的不确定性方面,方法学进展有限。

目的:我们旨在 1)开发一种统计多尺度方法来解决队列研究中的缓冲区相关尺度效应,2)研究我们的多尺度方法和特定选择的缓冲区大小之间的环境-健康关联有何不同。

方法:我们使用空隙分析来确定多个高分辨率暴露面(即细颗粒物[PM]、噪声和归一化差异植被指数[NDVI])的最大有意义的缓冲区大小。将暴露情况与 770 万荷兰成年人在其家庭住址相关联。我们根据精细距离增量的缓冲区来分配暴露估计值,直到基于空隙的上限达到为止。贝叶斯 Cox 模型平均解决了在特定暴露的最大缓冲区限制内估计暴露效应大小的地理不确定性。Z 检验评估了平均效应大小与通过预选择的 100、300、1200 和 1500 米缓冲区获得的效应大小之间的统计学差异。

结果:估计的空隙曲线表明了特定暴露的最大缓冲区大小限制;最大的是 NDVI(960 米),其次是噪声(910 米)和 PM(450 米)。我们在八年的随访中记录了 845229 例死亡。我们的多尺度方法表明,较高的 NDVI 值与死亡率风险呈保护相关(风险比[HR]:0.917,95%置信区间[CI]:0.886-0.948)。噪声暴露增加与死亡率风险增加相关(HR:1.003,95%CI:1.002-1.003),而 PM 则无关联(HR:0.998,95%CI:0.997-1.000)。NDVI 和噪声的效应大小在平均和预指定的缓冲区之间存在显著差异(p<0.05)。

结论:基于住所的暴露评估中的地理不确定性可能会掩盖环境-健康关联或产生虚假关联。我们的多尺度方法产生了更一致的效应估计值,并减轻了上下文不确定性。

相似文献

[1]
Geographic uncertainties in external exposome studies: A multi-scale approach to reduce exposure misclassification.

Sci Total Environ. 2024-1-1

[2]
Mortality-Air Pollution Associations in Low Exposure Environments (MAPLE): Phase 2.

Res Rep Health Eff Inst. 2022-7

[3]
Mortality and Morbidity Effects of Long-Term Exposure to Low-Level PM, BC, NO, and O: An Analysis of European Cohorts in the ELAPSE Project.

Res Rep Health Eff Inst. 2021-9

[4]
Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study.

Res Rep Health Eff Inst. 2009-3

[5]
Exposure to surrounding greenness and natural-cause and cause-specific mortality in the ELAPSE pooled cohort.

Environ Int. 2022-8

[6]
Measuring environmental exposures in people's activity space: The need to account for travel modes and exposure decay.

J Expo Sci Environ Epidemiol. 2023-11

[7]
Green space, air pollution, traffic noise and mental wellbeing throughout adolescence: Findings from the PIAMA study.

Environ Int. 2022-5

[8]
Spatiotemporal Contextual Uncertainties in Green Space Exposure Measures: Exploring a Time Series of the Normalized Difference Vegetation Indices.

Int J Environ Res Public Health. 2019-3-8

[9]
Associations of combined exposures to surrounding green, air pollution and traffic noise on mental health.

Environ Int. 2019-5-31

[10]
Machine learning approaches to characterize the obesogenic urban exposome.

Environ Int. 2022-1

引用本文的文献

[1]
The Exposome and the Kidney: A Silent Dialogue Shaping Chronic Kidney Disease.

J Xenobiot. 2025-5-14

[2]
Reconceptualizing and Defining Exposomics within Environmental Health: Expanding the Scope of Health Research.

Environ Health Perspect. 2024-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索