The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
BASF SE, Ludwigshafen am Rhein, Germany.
Microb Cell Fact. 2019 Mar 11;18(1):50. doi: 10.1186/s12934-019-1101-5.
The physiological characterization of microorganisms provides valuable information for bioprocess development. Chemostat cultivations are a powerful tool for this purpose, as they allow defined changes to one single parameter at a time, which is most commonly the growth rate. The subsequent establishment of a steady state then permits constant variables enabling the acquisition of reproducible data sets for comparing microbial performance under different conditions. We performed physiological characterizations of a 3-hydroxypropionic acid (3-HP) producing Saccharomyces cerevisiae strain in a miniaturized and parallelized chemostat cultivation system. The physiological conditions under investigation were various growth rates controlled by different nutrient limitations (C, N, P). Based on the cultivation parameters obtained subsequent fed-batch cultivations were designed.
We report technical advancements of a small-scale chemostat cultivation system and its applicability for reliable strain screening under different physiological conditions, i.e. varying dilution rates and different substrate limitations (C, N, P). Exploring the performance of an engineered 3-HP producing S. cerevisiae strain under carbon-limiting conditions revealed the highest 3-HP yields per substrate and biomass of 16.6 %C-mol and 0.43 g gCDW, respectively, at the lowest set dilution rate of 0.04 h. 3-HP production was further optimized by applying N- and P-limiting conditions, which resulted in a further increase in 3-HP yields revealing values of 21.1 %C-mol and 0.50 g gCDW under phosphate-limiting conditions. The corresponding parameters favoring an increased 3-HP production, i.e. dilution rate as well as C- and P-limiting conditions, were transferred from the small-scale chemostat cultivation system to 1-L bench-top fermenters operating in fed-batch conditions, revealing 3-HP yields of 15.9 %C-mol and 0.45 g gCDW under C-limiting, as well as 25.6 %C-mol and 0.50 g gCDW under phosphate-limiting conditions.
Small-scale chemostat cultures are well suited for the physiological characterization of microorganisms, particularly for investigating the effect of changing cultivation parameters on microbial performance. In our study, optimal conditions for 3-HP production comprised (i) a low dilution rate of 0.04 h under carbon-limiting conditions and (ii) the use of phosphate-limiting conditions. Similar 3-HP yields were achieved in chemostat and fed-batch cultures under both C- and P-limiting conditions proving the growth rate as robust parameter for process transfer and thus the small-scale chemostat system as powerful tool for process optimization.
微生物的生理特性为生物过程的开发提供了有价值的信息。恒化器培养是一种非常有用的工具,因为它可以一次定义一个参数的变化,通常是生长速率。随后建立一个稳定状态,然后允许恒量变量的建立,从而可以在不同条件下获得可重复的微生物性能数据集。我们在微型化和并行化的恒化器培养系统中对产 3-羟基丙酸(3-HP)的酿酒酵母进行了生理特性分析。所研究的生理条件是通过不同的营养限制(C、N、P)来控制各种生长速率。基于获得的培养参数,随后设计了补料分批培养。
我们报告了小型恒化器培养系统的技术进步及其在不同生理条件下可靠筛选菌株的适用性,即在不同的稀释率和不同的基质限制(C、N、P)下。在碳限制条件下探索工程化的 3-HP 生产酿酒酵母菌株的性能,发现最高的 3-HP 产率分别为每底物 16.6% C-摩尔和每生物质 0.43 g gCDW,在最低设定的稀释率 0.04 h。通过应用氮和磷限制条件进一步优化 3-HP 生产,导致 3-HP 产率进一步增加,在磷酸盐限制条件下达到 21.1% C-摩尔和 0.50 g gCDW。有利于增加 3-HP 生产的相应参数,即稀释率以及 C 和 P 限制条件,从小型恒化器培养系统转移到 1-L 台式发酵罐在补料分批条件下运行,在碳限制下获得 15.9% C-摩尔和 0.45 g gCDW 的 3-HP 产率,以及在磷酸盐限制下获得 25.6% C-摩尔和 0.50 g gCDW 的 3-HP 产率。
小型恒化器培养非常适合微生物的生理特性分析,特别是用于研究改变培养参数对微生物性能的影响。在我们的研究中,3-HP 生产的最佳条件包括(i)在碳限制条件下低稀释率为 0.04 h,(ii)使用磷酸盐限制条件。在碳和磷限制条件下,恒化器和补料分批培养中均获得相似的 3-HP 产率,证明生长速率是过程转移的稳健参数,因此小型恒化器系统是优化过程的有力工具。