Suppr超能文献

在接近零比生长速率条件下,酿酒酵母非能量限制恒化培养的定量生理学。

Quantitative Physiology of Non-Energy-Limited Retentostat Cultures of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates.

机构信息

Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.

Department of Biotechnology, Delft University of Technology, Delft, The Netherlands

出版信息

Appl Environ Microbiol. 2019 Oct 1;85(20). doi: 10.1128/AEM.01161-19. Print 2019 Oct 15.

Abstract

So far, the physiology of at near-zero growth rates has been studied in retentostat cultures with a growth-limiting supply of the carbon and energy source. Despite its relevance in nature and industry, the near-zero growth physiology of under conditions where growth is limited by the supply of non-energy substrates remains largely unexplored. This study analyzes the physiology of in aerobic chemostat and retentostat cultures grown under either ammonium or phosphate limitation. To compensate for loss of extracellular nitrogen- or phosphorus-containing compounds, establishing near-zero growth rates (μ < 0.002 h) in these retentostats required addition of low concentrations of ammonium or phosphate to reservoir media. In chemostats as well as in retentostats, strongly reduced cellular contents of the growth-limiting element (nitrogen or phosphorus) and high accumulation levels of storage carbohydrates were observed. Even at near-zero growth rates, culture viability in non-energy-limited retentostats remained above 80% and ATP synthesis was still sufficient to maintain an adequate energy status and keep cells in a metabolically active state. Compared to similar glucose-limited retentostat cultures, the nitrogen- and phosphate-limited cultures showed aerobic fermentation and a partial uncoupling of catabolism and anabolism. The possibility to achieve stable, near-zero growth cultures of under nitrogen or phosphorus limitation offers interesting prospects for high-yield production of bio-based chemicals. The yeast is a commonly used microbial host for production of various biochemical compounds. From a physiological perspective, biosynthesis of these compounds competes with biomass formation in terms of carbon and/or energy equivalents. Fermentation processes functioning at extremely low or near-zero growth rates would prevent loss of feedstock to biomass production. Establishing cultures in which growth is restricted by the limited supply of a non-energy substrate therefore could have a wide range of industrial applications but remains largely unexplored. In this work we accomplished near-zero growth of through limited supply of a non-energy nutrient, namely, the nitrogen or phosphorus source, and carried out a quantitative physiological study of the cells under these conditions. The possibility to achieve near-zero-growth cultures through limited supply of a non-energy nutrient may offer interesting prospects to develop novel fermentation processes for high-yield production of bio-based chemicals.

摘要

迄今为止,在以碳和能源源的生长限制供应的恒化器培养物中已经研究了接近零生长率下的生理学。尽管它在自然界和工业中具有相关性,但在生长受到非能源底物供应限制的条件下接近零生长的生理学仍然在很大程度上未被探索。本研究分析了在有氧恒化器和恒化器培养物中生长的条件下,生长受到铵或磷酸盐限制时的生理学。为了弥补细胞外含氮或含磷化合物的损失,在这些恒化器中建立接近零的生长速率(μ<0.002 h)需要向储液媒体中添加低浓度的铵或磷酸盐。在恒化器和恒化器中,观察到生长限制元素(氮或磷)的细胞含量大大减少,并且积累了高水平的储存碳水化合物。即使在接近零的生长速率下,非能源限制的恒化器中的培养物活力仍保持在 80%以上,并且 ATP 合成仍然足以维持足够的能量状态并使细胞保持代谢活跃状态。与类似的葡萄糖限制恒化器培养物相比,氮和磷限制培养物显示出好氧发酵和分解代谢和合成代谢的部分解偶联。在氮或磷限制下实现稳定的接近零生长的能力为基于生物的化学品的高产量生产提供了有趣的前景。酵母是用于生产各种生化化合物的常用微生物宿主。从生理学的角度来看,这些化合物的生物合成与碳和/或能量当量的生物量形成竞争。在极低或接近零的生长速率下运行的发酵过程将防止原料损失到生物量生产中。通过限制非能源底物的有限供应来建立生长受到限制的培养物因此可以具有广泛的工业应用,但在很大程度上仍未被探索。在这项工作中,我们通过限制非能源营养物(即氮或磷源)的供应来实现接近零的生长,并在这些条件下对细胞进行了定量生理学研究。通过限制非能源营养物的供应来实现接近零生长的能力可能为开发用于基于生物的化学品的高产率生产的新型发酵工艺提供了有趣的前景。

相似文献

引用本文的文献

本文引用的文献

5
Engineering Cellular Metabolism.工程细胞代谢。
Cell. 2016 Mar 10;164(6):1185-1197. doi: 10.1016/j.cell.2016.02.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验