Suppr超能文献

比较分析海马体积测量中容积调整方法在阿尔茨海默病诊断中的应用。

Comparative analysis of methods of volume adjustment in hippocampal volumetry for the diagnosis of Alzheimer disease.

机构信息

Department of Neurology, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain.

Department of Neurology, Hospital Ruber Internacional, C/La Masó 38, 28034 Madrid, Spain.

出版信息

J Neuroradiol. 2020 Mar;47(2):161-165. doi: 10.1016/j.neurad.2019.02.004. Epub 2019 Mar 8.

Abstract

INTRODUCTION

Hippocampal volumetry can discriminate normal subjects from patients with amnestic mild cognitive impairment (MCI) or Alzheimer disease (AD). We have analyzed the effects of different methods of hippocampal volume (HV) adjustment on the diagnostic accuracy of this technique.

METHODS

Cross-sectional analysis of 148 subjects of the ADNI database (48 normal, 66 MCI, 34 AD). Brain volumes were calculated from 3T MRI scans with gm extractor, a fully automated script based on FSL. A series of logistic regression models was obtained using 9 volumes of reference and 3 methods of adjustment (normalization, covariance, bilinear regression). Diagnostic accuracy was evaluated with the receiver operating characteristic curve method. External validity was assessed with 10-fold cross-validation.

RESULTS

The models with the highest area under the curve (AUC) were those including the HV normalized by total intracranial volume (TIV). The differences with bilinear regression and the covariance method adjusted by TIV were minor and not statistically significant. The lowest AUCs corresponded to the models based on raw (unadjusted) HVs. The results were qualitatively similar in two clinical settings (normal versus MCI, and normal versus AD), but the differences were higher in the normal versus MCI context.

CONCLUSION

The accuracy of hippocampal volumetry for the differential diagnosis between normal subjects and patients with MCI or AD was maximized by normalizing the HV by the TIV. Our results do not exclude the potential superiority of non-linear models.

摘要

简介

海马体容积测量可用于区分正常受试者与遗忘型轻度认知障碍(MCI)或阿尔茨海默病(AD)患者。我们分析了不同海马体体积(HV)调整方法对该技术诊断准确性的影响。

方法

对 ADNI 数据库中的 148 名受试者进行横断面分析(48 名正常,66 名 MCI,34 名 AD)。使用基于 FSL 的全自动脚本 gm extractor 从 3T MRI 扫描中计算脑体积。使用 9 个参考体积和 3 种调整方法(归一化、协方差、双线性回归)获得一系列逻辑回归模型。使用受试者工作特征曲线法评估诊断准确性。使用 10 倍交叉验证评估外部有效性。

结果

曲线下面积(AUC)最高的模型是通过总颅内体积(TIV)归一化的 HV 模型。与双线性回归和 TIV 协方差调整方法相比,差异较小且无统计学意义。最低 AUC 对应于基于原始(未调整)HV 的模型。在两种临床环境(正常与 MCI,正常与 AD)中,结果定性相似,但在正常与 MCI 背景下差异更大。

结论

通过将 HV 按 TIV 归一化,可最大程度地提高海马体容积测量在正常受试者与 MCI 或 AD 患者之间鉴别诊断的准确性。我们的结果并不排除非线性模型的潜在优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验