Suppa Per, Hampel Harald, Kepp Timo, Lange Catharina, Spies Lothar, Fiebach Jochen B, Dubois Bruno, Buchert Ralph
Department of Nuclear Medicine, Charité, Berlin, Germany.
Jung diagnostics GmbH, Hamburg, Germany.
J Alzheimers Dis. 2016;51(3):867-73. doi: 10.3233/JAD-150804.
MRI-based hippocampus volume, a core feasible biomarker of Alzheimer's disease (AD), is not yet widely used in clinical patient care, partly due to lack of validation of software tools for hippocampal volumetry that are compatible with routine workflow. Here, we evaluate fully-automated and computationally efficient hippocampal volumetry with FSL-FIRST for prediction of AD dementia (ADD) in subjects with amnestic mild cognitive impairment (aMCI) from phase 1 of the Alzheimer's Disease Neuroimaging Initiative. Receiver operating characteristic analysis of FSL-FIRST hippocampal volume (corrected for head size and age) revealed an area under the curve of 0.79, 0.70, and 0.70 for prediction of aMCI-to-ADD conversion within 12, 24, or 36 months, respectively. Thus, FSL-FIRST provides about the same power for prediction of progression to ADD in aMCI as other volumetry methods.
基于磁共振成像(MRI)的海马体积是阿尔茨海默病(AD)一种核心的可行生物标志物,但尚未在临床患者护理中广泛应用,部分原因是缺乏与常规工作流程兼容的海马体积测量软件工具的验证。在此,我们使用FSL-FIRST评估了全自动且计算高效的海马体积测量方法,以预测来自阿尔茨海默病神经影像倡议(ADNI)第一阶段的遗忘型轻度认知障碍(aMCI)患者的AD痴呆(ADD)。FSL-FIRST海马体积(校正了头部大小和年龄)的受试者工作特征分析显示,预测12、24或36个月内aMCI向ADD转化的曲线下面积分别为0.79、0.70和0.70。因此,FSL-FIRST在预测aMCI进展为ADD方面的能力与其他体积测量方法大致相同。