Suppr超能文献

磁共振成像纹理比海马体积更早预测阿尔茨海默病导致的痴呆进展。

Magnetic resonance imaging texture predicts progression to dementia due to Alzheimer disease earlier than hippocampal volume.

机构信息

From the Department of Brain & Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea (S. Lee, Kim); the Health Innovation Big Data Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea (H. Lee); the Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea (Kim); and the Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (Kim).

出版信息

J Psychiatry Neurosci. 2020 Jan 1;45(1):7-14. doi: 10.1503/jpn.180171.

Abstract

BACKGROUND

Early identification of people at risk of imminent progression to dementia due to Alzheimer disease is crucial for timely intervention and treatment. We investigated whether the texture of MRI brain scans could predict the progression of mild cognitive impairment (MCI) to Alzheimer disease earlier than volume.

METHODS

We constructed a development data set (121 people who were cognitively normal and 145 who had mild Alzheimer disease) and a validation data set (113 patients with stable MCI who did not progress to Alzheimer disease for 3 years; 40 with early MCI who progressed to Alzheimer disease after 12–36 months; and 41 with late MCI who progressed to Alzheimer disease within 12 months) from the Alzheimer’s Disease Neuroimaging Initiative. We analyzed the texture of the hippocampus, precuneus and posterior cingulate cortex using a grey-level co-occurrence matrix. We constructed texture and volume indices from the development data set using logistic regression. Using area under the curve (AUC) of receiver operator characteristics, we compared the accuracy of hippocampal volume, hippocampal texture and the composite texture of the hippocampus, precuneus and posterior cingulate cortex in predicting conversion from MCI to Alzheimer disease in the validation data set.

RESULTS

Compared with hippocampal volume, hippocampal texture (0.790 v. 0.739, p = 0.047) and composite texture (0.811 v. 0.739, p = 0.007) showed larger AUCs for conversion to Alzheimer disease from both early and late MCI. Hippocampal texture showed a marginally larger AUC than hippocampal volume in early MCI (0.795 v. 0.726, p = 0.060). Composite texture showed a larger AUC for conversion to Alzheimer disease than hippocampal volume in both early (0.817 v. 0.726, p = 0.027) and late MCI (0.805 v. 0.753, p = 0.019).

LIMITATIONS

This study was limited by the absence of histological data, and the pathology reflected by the texture measures remains to be validated.

CONCLUSION

Textures of the hippocampus, precuneus and posterior cingulate cortex predicted conversion from MCI to Alzheimer disease at an earlier time point and with higher accuracy than hippocampal volume.

摘要

背景

早期识别因阿尔茨海默病而即将发展为痴呆的高危人群对于及时干预和治疗至关重要。我们研究了 MRI 脑扫描的纹理是否可以比体积更早地预测轻度认知障碍(MCI)向阿尔茨海默病的进展。

方法

我们构建了一个开发数据集(121 名认知正常的人和 145 名轻度阿尔茨海默病患者)和一个验证数据集(113 名稳定 MCI 患者在 3 年内未进展为阿尔茨海默病;40 名早期 MCI 患者在 12-36 个月内进展为阿尔茨海默病;41 名晚期 MCI 患者在 12 个月内进展为阿尔茨海默病),来自阿尔茨海默病神经影像学倡议。我们使用灰度共生矩阵分析了海马体、楔前叶和后扣带回皮质的纹理。我们使用逻辑回归从开发数据集构建纹理和体积指数。使用接收器操作特征曲线下的面积(AUC),我们比较了验证数据集中海马体体积、海马体纹理以及海马体、楔前叶和后扣带回皮质的综合纹理在预测 MCI 向阿尔茨海默病转化方面的准确性。

结果

与海马体体积相比,海马体纹理(0.790 比 0.739,p=0.047)和综合纹理(0.811 比 0.739,p=0.007)在预测早期和晚期 MCI 向阿尔茨海默病转化方面具有更大的 AUC。在早期 MCI 中,海马体纹理的 AUC 略大于海马体体积(0.795 比 0.726,p=0.060)。在早期(0.817 比 0.726,p=0.027)和晚期(0.805 比 0.753,p=0.019)MCI 中,综合纹理的 AUC 均大于海马体体积。

局限性

本研究的局限性在于缺乏组织学数据,并且纹理测量所反映的病理学仍有待验证。

结论

与海马体体积相比,海马体、楔前叶和后扣带皮层的纹理可以更早地预测 MCI 向阿尔茨海默病的转化,并且具有更高的准确性。

相似文献

引用本文的文献

10
Consensus on rapid screening for prodromal Alzheimer's disease in China.中国阿尔茨海默病前驱期快速筛查的共识
Gen Psychiatr. 2024 Feb 1;37(1):e101310. doi: 10.1136/gpsych-2023-101310. eCollection 2024.

本文引用的文献

6
Voxel-based texture analysis of the brain.基于体素的脑纹理分析
PLoS One. 2015 Mar 10;10(3):e0117759. doi: 10.1371/journal.pone.0117759. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验