Suppr超能文献

青光眼 OCT 和 OCT 血管造影的测量下限和动态范围。

Measurement Floors and Dynamic Ranges of OCT and OCT Angiography in Glaucoma.

机构信息

Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla, California.

Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla, California.

出版信息

Ophthalmology. 2019 Jul;126(7):980-988. doi: 10.1016/j.ophtha.2019.03.003. Epub 2019 Mar 8.

Abstract

PURPOSE

To determine if OCT angiography (OCTA)-derived vessel density measurements can extend the available dynamic range for detecting glaucoma compared with spectral-domain (SD) OCT-derived thickness measurements.

DESIGN

Observational, cross-sectional study.

PARTICIPANTS

A total of 509 eyes from 38 healthy participants, 63 glaucoma suspects, and 193 glaucoma patients enrolled in the Diagnostic Innovations in Glaucoma Study.

METHODS

Relative vessel density and tissue thickness measurement floors of perifoveal vessel density (pfVD), circumpapillary capillary density (cpCD), circumpapillary retinal nerve fiber (cpRNFL) thickness, ganglion cell complex (GCC) thickness, and visual field (VF) mean deviation (MD) were investigated and compared with a previously reported linear change point model (CPM) and locally weighted scatterplot smoothing curves.

MAIN OUTCOME MEASURES

Estimated vessel density and tissue thickness measurement floors and corresponding dynamic ranges.

RESULTS

Visual field MD ranged from -30.1 to 2.8 decibels (dB). No measurement floor was found for pfVD, which continued to decrease constantly until very advanced disease. A true floor (i.e., slope of approximately 0 after observed CPM change point) was detected for cpRNFL thickness only. The post-CPM estimated floors were 49.5±2.6 μm for cpRNFL thickness, 70.7±1.0 μm for GCC thickness, and 31.2±1.1% for cpCD. Perifoveal vessel density reached the post-CPM estimated floor later in the disease (VF MD, -25.8±3.8 dB) than cpCD (VF MD, -19.3±2.4 dB), cpRNFL thickness (VF MD, -17.5±3.3 dB), and GCC thickness (VF MD, -13.9±1.8 dB; P < 0.001). The number of available measurement steps from normal values to the CPM estimated floor was greatest for cpRNFL thickness (8.9), followed by GCC thickness (7.4), cpCD (4.5), and pfVD (3.8).

CONCLUSIONS

In late-stage glaucoma, particularly when VF MD is worse than -14 dB, OCTA-measured pfVD is a promising tool for monitoring progression because it does not have a detectable measurement floor. However, the number of steps within the dynamic range of a parameter also needs to be considered. Although thickness parameters reached the floor earlier than OCTA-measured pfVD, there are more such steps with thickness than OCTA parameters.

摘要

目的

确定与谱域(SD)OCT 衍生的厚度测量相比,OCT 血管造影(OCTA)衍生的血管密度测量是否可以扩展检测青光眼的可用动态范围。

设计

观察性、横断面研究。

参与者

共有 38 名健康参与者、63 名青光眼疑似患者和 193 名青光眼患者的 509 只眼纳入了诊断性青光眼研究中的创新研究。

方法

研究了中心凹旁血管密度(pfVD)、周边毛细血管密度(cpCD)、周边视网膜神经纤维(cpRNFL)厚度、神经节细胞复合体(GCC)厚度和视野(VF)平均偏差(MD)的相对血管密度和组织厚度测量下限,并与之前报道的线性变化点模型(CPM)和局部加权散点平滑曲线进行了比较。

主要观察指标

估计的血管密度和组织厚度测量下限及其相应的动态范围。

结果

VF MD 范围为-30.1 至 2.8 分贝(dB)。pfVD 未发现测量下限,其持续不断地下降,直到疾病非常晚期。仅 cpRNFL 厚度检测到真正的下限(即,观察到 CPM 变化点后斜率约为 0)。CPM 后估计的下限分别为 cpRNFL 厚度 49.5±2.6μm、GCC 厚度 70.7±1.0μm和 cpCD 31.2±1.1%。pfVD 在疾病后期(VF MD,-25.8±3.8dB)比 cpCD(VF MD,-19.3±2.4dB)、cpRNFL 厚度(VF MD,-17.5±3.3dB)和 GCC 厚度(VF MD,-13.9±1.8dB)达到 CPM 后估计的下限晚;P<0.001)。从正常到 CPM 估计下限的测量步骤数量最多的是 cpRNFL 厚度(8.9),其次是 GCC 厚度(7.4)、cpCD(4.5)和 pfVD(3.8)。

结论

在晚期青光眼,特别是当 VF MD 差于-14dB 时,OCTA 测量的 pfVD 是监测进展的有前途的工具,因为它没有可检测的测量下限。然而,参数的动态范围内的步骤数量也需要考虑。尽管厚度参数比 OCTA 测量的 pfVD 更早地达到下限,但厚度参数的步骤数量比 OCTA 参数更多。

相似文献

1
Measurement Floors and Dynamic Ranges of OCT and OCT Angiography in Glaucoma.
Ophthalmology. 2019 Jul;126(7):980-988. doi: 10.1016/j.ophtha.2019.03.003. Epub 2019 Mar 8.
2
Peripapillary and Macular Vessel Density in Patients with Primary Open-Angle Glaucoma and Unilateral Visual Field Loss.
Ophthalmology. 2018 Apr;125(4):578-587. doi: 10.1016/j.ophtha.2017.10.029. Epub 2017 Nov 22.
3
Peripapillary and Macular Vessel Density in Patients with Glaucoma and Single-Hemifield Visual Field Defect.
Ophthalmology. 2017 May;124(5):709-719. doi: 10.1016/j.ophtha.2017.01.004. Epub 2017 Feb 10.
4
Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma.
Am J Ophthalmol. 2019 Aug;204:51-61. doi: 10.1016/j.ajo.2019.03.004. Epub 2019 Mar 14.
5
Structure-function Relationship in Advanced Glaucoma After Reaching the RNFL Floor.
J Glaucoma. 2019 Nov;28(11):1006-1011. doi: 10.1097/IJG.0000000000001374.
6
Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma.
Ophthalmology. 2016 Dec;123(12):2498-2508. doi: 10.1016/j.ophtha.2016.08.041. Epub 2016 Oct 7.
8
Steps to Measurement Floor of an Optical Microangiography Device in Glaucoma.
Am J Ophthalmol. 2021 Nov;231:58-69. doi: 10.1016/j.ajo.2021.05.012. Epub 2021 May 26.
10
Deep Retinal Layer Microvasculature Dropout Detected by the Optical Coherence Tomography Angiography in Glaucoma.
Ophthalmology. 2016 Dec;123(12):2509-2518. doi: 10.1016/j.ophtha.2016.09.002. Epub 2016 Oct 18.

引用本文的文献

1
Comparison of 10-2 Visual Field Using Melbourne Rapid Fields Online Perimetry and Humphrey Field Analyzer.
Transl Vis Sci Technol. 2025 Sep 2;14(9):14. doi: 10.1167/tvst.14.9.14.
2
A Joint Bayesian Longitudinal Model for Macular Structure-Function Correlations in Glaucoma.
Ophthalmol Sci. 2025 Jul 26;5(6):100897. doi: 10.1016/j.xops.2025.100897. eCollection 2025 Nov-Dec.
3
[Progression assessment of glaucoma].
Ophthalmologie. 2025 Sep 4. doi: 10.1007/s00347-025-02302-x.
4
Optic Nerve Imaging-From Disc Photos to OCT.
Ophthalmol Glaucoma. 2025 Aug 5. doi: 10.1016/j.ogla.2025.06.014.
5
Deep Learning-Based Prediction of Glaucoma Severity and Progression Using Imo/TEMPO Screening Program.
Ophthalmol Sci. 2025 Apr 28;5(6):100805. doi: 10.1016/j.xops.2025.100805. eCollection 2025 Nov-Dec.
7
Percentage macular ganglion cell complex and peripapillary retinal nerve fiber layer loss in different stages of glaucoma.
Indian J Ophthalmol. 2025 Mar 1;73(Suppl 2):S308-S312. doi: 10.4103/IJO.IJO_3238_23. Epub 2025 Feb 21.
10
Number of macula optical coherence tomography scans needed to detect glaucoma progression.
Br J Ophthalmol. 2025 May 30;109(6):675-681. doi: 10.1136/bjo-2023-324916.

本文引用的文献

1
Early retinal neurovascular impairment in patients with diabetes without clinically detectable retinopathy.
Br J Ophthalmol. 2019 Dec;103(12):1747-1752. doi: 10.1136/bjophthalmol-2018-313582. Epub 2019 Jan 23.
3
Repeatability of vessel density measurements of optical coherence tomography angiography in normal and glaucoma eyes.
Br J Ophthalmol. 2018 Mar;102(3):352-357. doi: 10.1136/bjophthalmol-2017-310637. Epub 2017 Jul 24.
4
Progressive Macula Vessel Density Loss in Primary Open-Angle Glaucoma: A Longitudinal Study.
Am J Ophthalmol. 2017 Oct;182:107-117. doi: 10.1016/j.ajo.2017.07.011. Epub 2017 Jul 20.
6
Ganglion Cell-Inner Plexiform Layer Change Detected by Optical Coherence Tomography Indicates Progression in Advanced Glaucoma.
Ophthalmology. 2017 Oct;124(10):1466-1474. doi: 10.1016/j.ophtha.2017.04.023. Epub 2017 May 23.
9
Peripapillary and Macular Vessel Density in Patients with Glaucoma and Single-Hemifield Visual Field Defect.
Ophthalmology. 2017 May;124(5):709-719. doi: 10.1016/j.ophtha.2017.01.004. Epub 2017 Feb 10.
10
Estimating Optical Coherence Tomography Structural Measurement Floors to Improve Detection of Progression in Advanced Glaucoma.
Am J Ophthalmol. 2017 Mar;175:37-44. doi: 10.1016/j.ajo.2016.11.010. Epub 2016 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验