Patel Yogi A, Pasricha Pankaj J
Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21205.
Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205.
Cold Spring Harb Perspect Med. 2020 Jan 2;10(1):a034355. doi: 10.1101/cshperspect.a034355.
The small intestine is the longest organ in the human body, spanning a length of ∼5 m and compartmentalized into three distinct regions with specific roles in maintenance of comprehensive homeostasis. Along its length exists as a unique and independent system-called the enteric nervous system (ENS)-which coordinates the multitude of functions continuously around the clock. Yet, with so many vital roles played, the functions, relationships, and roles of the small intestine and ENS remain largely elusive. This fundamental hole in the physiology of the small intestine and ENS introduces a substantial number of challenges when attempting to create bioelectronic approaches for treatment of various disorders originating in the small intestine. Here, we review existing therapeutic options for modulating the small intestine, discuss fundamental gaps that must be addressed, and highlight novel methods and approaches to consider for development of bioelectronic approaches aiming to modulate the small intestine.
小肠是人体最长的器官,长度约为5米,分为三个不同区域,在维持全面的内环境稳态中发挥着特定作用。在其全长范围内存在着一个独特且独立的系统——肠神经系统(ENS),该系统昼夜不停地协调着众多功能。然而,尽管小肠和肠神经系统发挥着如此多至关重要的作用,它们的功能、相互关系及作用在很大程度上仍不为人所知。在尝试创建用于治疗源自小肠的各种疾病的生物电子方法时,小肠和肠神经系统生理学上的这一基本空白带来了大量挑战。在此,我们综述了现有的调节小肠的治疗选择,讨论了必须解决的基本差距,并强调了在开发旨在调节小肠的生物电子方法时可考虑的新方法和途径。