Johnson Noah J J, Lam Brian, MacLeod Benjamin P, Sherbo Rebecca S, Moreno-Gonzalez Marta, Fork David K, Berlinguette Curtis P
Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia, Canada.
Nat Mater. 2019 May;18(5):454-458. doi: 10.1038/s41563-019-0308-5. Epub 2019 Mar 11.
Crystal facets, vertices and edges govern the energy landscape of metal surfaces and thus the chemical interactions on the surface. The facile absorption and desorption of hydrogen at a palladium surface provides a useful platform for defining how metal-solute interactions impact properties relevant to energy storage, catalysis and sensing. Recent advances in in operando and in situ techniques have enabled the phase transitions of single palladium nanocrystals to be temporally and spatially tracked during hydrogen absorption. We demonstrate herein that in situ X-ray diffraction can be used to track both hydrogen absorption and desorption in palladium nanocrystals. This ensemble measurement enabled us to delineate distinctive absorption and desorption mechanisms for nanocrystals containing exclusively (111) or (100) facets. We show that the rate of hydrogen absorption is higher for those nanocrystals containing a higher number of vertices, consistent with hydrogen absorption occurring quickly after β-phase nucleation at lattice-strained vertices. Tracking hydrogen desorption revealed initial desorption rates to be nearly tenfold faster for samples with (100) facets, presumably due to the faster recombination of surface hydrogen atoms. These results inspired us to make nanocrystals with a high number of vertices and (100) facets, which were found to accommodate fast hydrogen uptake and release.
晶面、顶点和棱边决定了金属表面的能量分布,进而决定了表面的化学相互作用。钯表面氢的快速吸收和解吸为确定金属-溶质相互作用如何影响与能量存储、催化和传感相关的性质提供了一个有用的平台。最近,原位和实时技术的进展使得在氢吸收过程中能够对单个钯纳米晶体的相变进行时空跟踪。我们在此证明,原位X射线衍射可用于跟踪钯纳米晶体中的氢吸收和解吸。这种整体测量使我们能够描绘出仅包含(111)或(100)晶面的纳米晶体独特的吸收和解吸机制。我们表明,对于那些含有较多顶点的纳米晶体,氢吸收速率更高,这与在晶格应变顶点处β相成核后氢快速吸收一致。跟踪氢解吸发现,具有(100)晶面的样品的初始解吸速率快近十倍,这可能是由于表面氢原子的重组更快。这些结果促使我们制备具有大量顶点和(100)晶面的纳米晶体,发现它们能够实现快速的氢吸收和释放。