Perxés Perich Marta, Lankman Jan-Willem, Keijzer Claudia J, van der Hoeven Jessi E S
Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands.
Nano Lett. 2025 Apr 2;25(13):5444-5451. doi: 10.1021/acs.nanolett.5c00702. Epub 2025 Mar 25.
The uptake and release of hydrogen are key parameters for hydrogen storage materials. Lattice strain offers a powerful way to tune hydride formation in metal nanoparticles. However, the role of strain on hydride formation is difficult to assess on a single nanoparticle level due to the lack of characterization tools to quantify strain in the presence of a gas. Here, we achieve a dynamic, study on the reversible hydride formation in individual palladium nanocubes by applying 4D scanning transmission electron microscopy (4D-STEM) in the presence of 1 bar H and quantitatively assess the lattice strain with subnanometer resolution. Upon hydride formation at 125 °C, the Pd lattice expands by ∼3.1% and relaxes back upon hydrogen desorption at 200 °C. Our 4D-STEM approach is relevant to a wide range of nanoparticle systems and applications, including catalyst- and gas-sensing materials.
氢的吸收和释放是储氢材料的关键参数。晶格应变提供了一种调节金属纳米颗粒中氢化物形成的有效方法。然而,由于缺乏在气体存在下量化应变的表征工具,应变对氢化物形成的作用在单个纳米颗粒水平上难以评估。在此,我们通过在1巴氢气存在下应用4D扫描透射电子显微镜(4D-STEM),对单个钯纳米立方体中可逆氢化物的形成进行了动态研究,并以亚纳米分辨率定量评估了晶格应变。在125°C形成氢化物时,钯晶格膨胀约3.1%,并在200°C氢气解吸时恢复原状。我们的4D-STEM方法适用于广泛的纳米颗粒系统和应用,包括催化剂和气体传感材料。