Ulvestad A, Welland M J, Collins S S E, Harder R, Maxey E, Wingert J, Singer A, Hy S, Mulvaney P, Zapol P, Shpyrko O G
Department of Physics, University of California-San Diego, La Jolla, California 92093-0319, USA.
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
Nat Commun. 2015 Dec 11;6:10092. doi: 10.1038/ncomms10092.
Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surface layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. Our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments.
反应环境中的相变在能量和信息存储、催化及传感器领域至关重要。对活性颗粒进行纳米结构化可实现更快的充/放电动力学、延长使用寿命并创造催化活性记录。然而,对于纳米颗粒而言,要确立结构与功能之间的因果联系颇具挑战,因为总体测量会将单个粒子的固有特性与样品多样性混在一起。在此,我们利用相干X射线衍射成像原位研究单个钯纳米立方体中的氢化相变。该相变动力学涉及富氢区域的成核与扩展,它取决于绝对时间(时效),且包含间歇性动力学(雪崩式变化)。富氢表面层在贫氢相中主导晶体应变,而在富氢相中,应变反转发生在立方体的角上。我们使用三维相场模型来解释实验结果。我们的实验和理论方法为设计和优化反应环境中单个纳米晶体的相变提供了一个通用框架。