Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
Biomech Model Mechanobiol. 2019 Jun;18(3):631-649. doi: 10.1007/s10237-018-01106-0. Epub 2019 Mar 12.
Corpus callosum trauma has long been implicated in mild traumatic brain injury (mTBI), yet the mechanism by which forces penetrate this structure is unknown. We investigated the hypothesis that coronal and horizontal rotations produce motion of the falx cerebri that damages the corpus callosum. We analyzed previously published head kinematics of 115 sports impacts (2 diagnosed mTBI) measured with instrumented mouthguards and used finite element (FE) simulations to correlate falx displacement with corpus callosum deformation. Peak coronal accelerations were larger in impacts with mTBI (8592 rad/s avg.) than those without (1412 rad/s avg.). From FE simulations, coronal acceleration was strongly correlated with deep lateral motion of the falx center (r = 0.85), while horizontal acceleration was correlated with deep lateral motion of the falx periphery (r > 0.78). Larger lateral displacement at the falx center and periphery was correlated with higher tract-oriented strains in the corpus callosum body (r = 0.91) and genu/splenium (r > 0.72), respectively. The relationship between the corpus callosum and falx was unique: removing the falx from the FE model halved peak strains in the corpus callosum from 35% to 17%. Consistent with model results, we found indications of corpus callosum trauma in diffusion tensor imaging of the mTBI athletes. For a measured alteration of consciousness, depressed fractional anisotropy and increased mean diffusivity indicated possible damage to the mid-posterior corpus callosum. Our results suggest that the corpus callosum may be sensitive to coronal and horizontal rotations because they drive lateral motion of a relatively stiff membrane, the falx, in the direction of commissural fibers below.
胼胝体创伤长期以来一直被认为与轻度创伤性脑损伤(mTBI)有关,但力穿透该结构的机制尚不清楚。我们研究了这样一种假设,即冠状面和水平面的旋转会产生镰状脑的运动,从而损伤胼胝体。我们分析了先前发表的 115 项运动撞击的头部运动学数据(2 例诊断为 mTBI),这些数据是使用仪器化的牙套测量的,并使用有限元(FE)模拟来将镰状位移与胼胝体变形相关联。有 mTBI 的撞击的冠状面加速度峰值(8592 rad/s avg.)明显大于没有 mTBI 的撞击(1412 rad/s avg.)。从 FE 模拟中可以看出,冠状面加速度与镰状中央的深层侧向运动高度相关(r = 0.85),而水平加速度与镰状周边的深层侧向运动相关(r > 0.78)。镰状中央和周边的侧向位移越大,胼胝体体部(r = 0.91)和膝部/压部(r > 0.72)的束向应变越高。胼胝体和镰状之间的关系是独特的:将镰状从 FE 模型中移除会使胼胝体的峰值应变从 35%降低到 17%。与模型结果一致,我们在 mTBI 运动员的弥散张量成像中发现了胼胝体损伤的迹象。对于意识改变的测量,降低的分数各向异性和增加的平均弥散度表明中后部胼胝体可能受损。我们的结果表明,胼胝体可能对冠状面和水平面的旋转敏感,因为它们会使相对僵硬的镰状膜在下方的连合纤维方向上产生侧向运动。