Suppr超能文献

含潜在变量的高维中介分析

High dimensional mediation analysis with latent variables.

作者信息

Derkach Andriy, Pfeiffer Ruth M, Chen Ting-Huei, Sampson Joshua N

机构信息

Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland.

Department of Mathematics and Statistics, Laval University, Quebec City, Canada.

出版信息

Biometrics. 2019 Sep;75(3):745-756. doi: 10.1111/biom.13053. Epub 2019 May 5.

Abstract

We propose a model for high dimensional mediation analysis that includes latent variables. We describe our model in the context of an epidemiologic study for incident breast cancer with one exposure and a large number of biomarkers (i.e., potential mediators). We assume that the exposure directly influences a group of latent, or unmeasured, factors which are associated with both the outcome and a subset of the biomarkers. The biomarkers associated with the latent factors linking the exposure to the outcome are considered "mediators." We derive the likelihood for this model and develop an expectation-maximization algorithm to maximize an L1-penalized version of this likelihood to limit the number of factors and associated biomarkers. We show that the resulting estimates are consistent and that the estimates of the nonzero parameters have an asymptotically normal distribution. In simulations, procedures based on this new model can have significantly higher power for detecting the mediating biomarkers compared with the simpler approaches. We apply our method to a study that evaluates the relationship between body mass index, 481 metabolic measurements, and estrogen-receptor positive breast cancer.

摘要

我们提出了一种用于高维中介分析的模型,该模型包含潜在变量。我们在一项针对新发乳腺癌的流行病学研究背景下描述我们的模型,该研究涉及一种暴露因素和大量生物标志物(即潜在中介变量)。我们假设该暴露因素直接影响一组与结局和一部分生物标志物都相关的潜在或未测量因素。与将暴露因素与结局联系起来的潜在因素相关的生物标志物被视为“中介变量”。我们推导了该模型的似然函数,并开发了一种期望最大化算法,以最大化该似然函数的L1惩罚版本,从而限制因素及相关生物标志物的数量。我们表明,所得估计值是一致的,并且非零参数的估计值具有渐近正态分布。在模拟中,与更简单的方法相比,基于这种新模型的程序在检测中介生物标志物方面具有显著更高的功效。我们将我们的方法应用于一项评估体重指数、481项代谢测量指标与雌激素受体阳性乳腺癌之间关系的研究。

相似文献

1
High dimensional mediation analysis with latent variables.含潜在变量的高维中介分析
Biometrics. 2019 Sep;75(3):745-756. doi: 10.1111/biom.13053. Epub 2019 May 5.
2
A Penalized Likelihood Method for Structural Equation Modeling.惩罚似然法在结构方程模型中的应用。
Psychometrika. 2017 Jun;82(2):329-354. doi: 10.1007/s11336-017-9566-9. Epub 2017 Apr 17.
9
Group testing in mediation analysis.中介分析中的群组检验。
Stat Med. 2020 Aug 15;39(18):2423-2436. doi: 10.1002/sim.8546. Epub 2020 May 4.

引用本文的文献

1
Mediation analysis with graph mediator.使用图形中介变量的中介分析。
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxaf004.

本文引用的文献

1
Expandable factor analysis.可扩展因子分析
Biometrika. 2017 Sep;104(3):649-663. doi: 10.1093/biomet/asx030. Epub 2017 Jun 16.
4
Flexible Mediation Analysis With Multiple Mediators.具有多个中介变量的灵活中介分析
Am J Epidemiol. 2017 Jul 15;186(2):184-193. doi: 10.1093/aje/kwx051.
5
Regularized Structural Equation Modeling.正则化结构方程模型
Struct Equ Modeling. 2016;23(4):555-566. doi: 10.1080/10705511.2016.1154793. Epub 2016 Apr 12.
6
Estimating and testing high-dimensional mediation effects in epigenetic studies.表观遗传学研究中高维中介效应的估计与检验
Bioinformatics. 2016 Oct 15;32(20):3150-3154. doi: 10.1093/bioinformatics/btw351. Epub 2016 Jun 29.
7
Mediation Analysis With Matched Case-Control Study Designs.匹配病例对照研究设计的中介分析
Am J Epidemiol. 2016 May 1;183(9):869-70. doi: 10.1093/aje/kww038. Epub 2016 Apr 13.
9
Causal mediation analysis with a latent mediator.具有潜在中介变量的因果中介分析。
Biom J. 2016 May;58(3):535-48. doi: 10.1002/bimj.201400124. Epub 2015 Sep 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验