Suppr超能文献

肝脏的运动稳健和血抑制的 M1 优化扩散磁共振成像。

Motion-robust and blood-suppressed M1-optimized diffusion MR imaging of the liver.

机构信息

Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.

Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin.

出版信息

Magn Reson Med. 2019 Jul;82(1):302-311. doi: 10.1002/mrm.27735. Epub 2019 Mar 12.

Abstract

PURPOSE

To develop motion-robust, blood-suppressed diffusion-weighted imaging (DWI) of the liver with optimized diffusion encoding waveforms and evaluate the accuracy and reproducibility of quantitative apparent diffusion coefficient (ADC) measurements.

METHODS

A novel approach for the design of diffusion weighting waveforms, termed M1-optimized diffusion imaging (MODI), is proposed. MODI includes an echo time-optimized motion-robust diffusion weighting gradient waveform design, with a small nonzero first-moment motion sensitivity (M1) value to enable blood signal suppression. Experiments were performed in eight healthy volunteers and five patient volunteers. In each case, DW images and ADC maps were compared between acquisitions using standard monopolar waveforms, motion moment-nulled (M1-nulled and M1-M2-nulled) waveforms, and the proposed MODI approach.

RESULTS

Healthy volunteer experiments using MODI showed no significant ADC bias in the left lobe relative to the right lobe (p < .05) demonstrating robustness to cardiac motion, and no significant ADC bias with respect to monopolar-based ADC measured in the right lobe (p < .05), demonstrating blood signal suppression. In contrast, monopolar-based ADC showed significant bias in the left lobe relative to the right lobe (p < .01) due to its sensitivity to motion, and both M1-nulled and M1-M2-nulled-based ADC showed significant bias (p < .01) due to the lack of blood suppression. Preliminary patient results also suggest MODI may enable improved visualization and quantitative assessment of lesions throughout the entire liver.

CONCLUSIONS

This novel method for diffusion gradient waveform design enables DWI of the liver with high robustness to motion and suppression of blood signals, overcoming the limitations of conventional monopolar waveforms and moment-nulled waveforms, respectively.

摘要

目的

开发运动稳健、血抑制的肝脏弥散加权成像(DWI),采用优化的弥散编码波形,并评估定量表观弥散系数(ADC)测量的准确性和可重复性。

方法

提出了一种新的弥散加权波形设计方法,称为 M1 优化弥散成像(MODI)。MODI 包括一个优化回波时间的运动稳健弥散加权梯度波形设计,具有小的非零第一矩运动灵敏度(M1)值,以实现血液信号抑制。在 8 名健康志愿者和 5 名患者志愿者中进行了实验。在每种情况下,比较了使用标准单极波形、运动矩零(M1 零和 M1-M2 零)和所提出的 MODI 方法采集的 DW 图像和 ADC 图。

结果

健康志愿者实验中,MODI 在左叶相对于右叶的 ADC 没有显著偏差(p<0.05),证明对心脏运动具有稳健性,并且在右叶测量的基于单极的 ADC 没有显著的 ADC 偏差(p<0.05),证明了血液信号抑制。相比之下,基于单极的 ADC 由于对运动的敏感性,在左叶相对于右叶有显著的偏差(p<0.01),而 M1 零和 M1-M2 零基于 ADC 由于缺乏血液抑制,也有显著的偏差(p<0.01)。初步的患者结果还表明,MODI 可能能够改善整个肝脏病变的可视化和定量评估。

结论

这种新的弥散梯度波形设计方法能够实现肝脏的 DWI,具有对运动的高度稳健性和血液信号的抑制,克服了传统单极波形和矩零波形的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验