a Department of Kinesiology, University of Waterloo , Waterloo , Ontario , Canada.
Autophagy. 2019 Sep;15(9):1606-1619. doi: 10.1080/15548627.2019.1591672. Epub 2019 Apr 7.
Macroautophagy/autophagy is a degradative process essential for various cellular processes. We previously demonstrated that autophagy-deficiency causes myoblast apoptosis and impairs myotube formation. In this study, we continued this work with particular emphasis on mitochondrial remodelling and stress/apoptotic signaling. We found increased (p < 0.05) autophagic (e.g., altered LC3B levels, increased ATG7, decreased SQSTM1) and mitophagic (e.g., BNIP3 upregulation, mitochondrial localized GFP-LC3 puncta, and elevated mitochondrial LC3B-II) signaling during myoblast differentiation. shRNA-mediated knockdown of ATG7 (sh) decreased these autophagic and mitophagic responses, while increasing CASP3 activity and ANXA5/annexin V staining in differentiating myoblasts; ultimately resulting in dramatically impaired myogenesis. Further confirming the importance of mitophagy in these responses, CRISPR-Cas9-mediated knockout of () resulted in increased CASP3 activity and DNA fragmentation as well as impaired myoblast differentiation. In addition, sh myoblasts displayed greater endoplasmic reticulum (e.g., increased CAPN activity and HSPA) and mitochondrial (e.g., mPTP formation, reduced mitochondrial membrane potential, elevated mitochondrial 4-HNE) stress. sh and myoblasts also displayed altered mitochondria-associated signaling (e.g., PPARGC1A, DNM1L, OPA1) and protein content (e.g., SLC25A4, VDAC1, CYCS). Moreover, sh myoblasts displayed CYCS and AIFM1 release from mitochondria, and CASP9 activation. Similarly, myoblasts had significantly higher CASP9 activation during differentiation. Importantly, administration of a chemical inhibitor of CASP9 (Ac-LEHD-CHO) or dominant-negative CASP9 (ad-DNCASP9) partially recovered differentiation and myogenesis in sh myoblasts. Together, these data demonstrate an essential role for autophagy in protecting myoblasts from mitochondrial oxidative stress and apoptotic signaling during differentiation, as well as in the regulation of mitochondrial network remodelling and myogenesis. : 3MA: 3-methyladenine; 4-HNE: 4-hydroxynonenal; ACT: actin; AIFM1/AIF: apoptosis-inducing factor, mitochondrion-associated 1; ANXA5: annexin V; ATG7: autophagy related 7; AU: arbitrary units; BAX: BCL2-associated X protein; BCL2: B cell leukemia/lymphoma 2; BECN1: beclin 1, autophagy related; BNIP3: BCL2/adenovirus E1B interacting protein 3; CAPN: calpain; CASP: caspase; CASP3: caspase 3; CASP8: caspase 8; CASP9: caspase 9; CASP12: caspase 12; CAT: catalase; CQ: chloroquine; CYCS: cytochrome c, somatic; DCF; 2',7'-dichlorofluorescein; DNM1L/DRP1: dynamin 1-like; DM: differentiation media; DMEM: Dulbecco's modified Eagle's medium; ER: endoplasmic reticulum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GM: growth media; p-H2AFX: phosphorylated H2A histone family, member X; H2BFM: H2B histone family, member M; HBSS: Hanks balanced salt solution; HSPA/HSP70: heat shock protein family A; JC-1: tetraethylbenzimidazolylcarbocyanine iodide; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; mPTP: mitochondrial permeability transition pore; MYH: myosin heavy chain; MYOG: myogenin; OPA1: OPA1, mitochondrial dynamin like GTPase; PI: propidium iodide; PINK1: PTEN induced putative kinase 1; PPARGC1A/PGC1α: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; ROS: reactive oxygen species; SLC25A4/ANT1: solute carrier family 25 (mitochondrial carrier, adenine nucleotide translocator), member 4; SOD1: superoxide dismutase 1, soluble; SOD2: superoxide dismutase 2, mitochondrial; SQSTM1/p62: sequestosome 1; VDAC1: voltage-dependent anion channel 1.
自噬是一种重要的细胞降解过程,对于各种细胞过程都是必不可少的。我们之前的研究表明,自噬缺陷会导致成肌细胞凋亡,并损害肌管形成。在这项研究中,我们继续研究了自噬在其中的作用,特别强调了线粒体重塑和应激/凋亡信号。我们发现,在成肌细胞分化过程中,自噬(例如,LC3B 水平改变、ATG7 增加、SQSTM1 减少)和噬线粒体(例如,BNIP3 上调、线粒体定位 GFP-LC3 斑点、线粒体 LC3B-II 增加)信号增加(p<0.05)。shRNA 介导的 ATG7(sh)敲低降低了这些自噬和噬线粒体反应,同时增加了分化的成肌细胞中 CASP3 活性和 ANXA5/膜联蛋白 V 染色;最终导致成肌发生明显受损。进一步证实噬线粒体在这些反应中的重要性,CRISPR-Cas9 介导的敲除导致 CASP3 活性和 DNA 片段化增加以及成肌细胞分化受损。此外,sh 成肌细胞还表现出内质网(例如,CAPN 活性和 HSPA 增加)和线粒体(例如,mPTP 形成、线粒体膜电位降低、线粒体 4-HNE 增加)应激增加。sh 和 成肌细胞还表现出与线粒体相关的信号(例如,PPARGC1A、DNM1L、OPA1)和蛋白质含量(例如,SLC25A4、VDAC1、CYCS)的改变。此外,sh 成肌细胞表现出 CYCS 和 AIFM1 从线粒体释放,以及 CASP9 激活。同样,分化过程中 成肌细胞的 CASP9 激活明显更高。重要的是,CASP9 的化学抑制剂(Ac-LEHD-CHO)或显性失活的 CASP9(ad-DNCASP9)的给药部分恢复了 sh 成肌细胞的分化和肌发生。综上所述,这些数据表明自噬在保护成肌细胞免受分化过程中线粒体氧化应激和凋亡信号方面以及在调节线粒体网络重塑和肌发生方面起着至关重要的作用。