Suppr超能文献

BNIP3L 介导的线粒体自噬是视神经少突胶质细胞分化过程中线粒体重塑所必需的。

BNIP3L-mediated mitophagy is required for mitochondrial remodeling during the differentiation of optic nerve oligodendrocytes.

机构信息

Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

Department of Ophthalmology, Wilmer Eye Institute, the Johns Hopkins University School of Medicine, Baltimore, MD, USA.

出版信息

Autophagy. 2021 Oct;17(10):3140-3159. doi: 10.1080/15548627.2020.1871204. Epub 2021 Jan 19.

Abstract

Retinal ganglion cell axons are heavily myelinated (98%) and myelin damage in the optic nerve (ON) severely affects vision. Understanding the molecular mechanism of oligodendrocyte progenitor cell (OPC) differentiation into mature oligodendrocytes will be essential for developing new therapeutic approaches for ON demyelinating diseases. To this end, we developed a new method for isolation and culture of ON-derived oligodendrocyte lineage cells and used it to study OPC differentiation. A critical aspect of cellular differentiation is macroautophagy/autophagy, a catabolic process that allows for cell remodeling by degradation of excess or damaged cellular molecules and organelles. Knockdown of ATG9A and BECN1 (pro-autophagic proteins involved in the early stages of autophagosome formation) led to a significant reduction in proliferation and survival of OPCs. We also found that autophagy flux (a measure of autophagic degradation activity) is significantly increased during progression of oligodendrocyte differentiation. Additionally, we demonstrate a significant change in mitochondrial dynamics during oligodendrocyte differentiation, which is associated with a significant increase in programmed mitophagy (selective autophagic clearance of mitochondria). This process is mediated by the mitophagy receptor BNIP3L (BCL2/adenovirus E1B interacting protein 3-like). BNIP3L-mediated mitophagy plays a crucial role in the regulation of mitochondrial network formation, mitochondrial function and the viability of newly differentiated oligodendrocytes. Our studies provide novel evidence that proper mitochondrial dynamics is required for establishment of functional mitochondria in mature oligodendrocytes. These findings are significant because targeting BNIP3L-mediated programmed mitophagy may provide a novel therapeutic approach for stimulating myelin repair in ON demyelinating diseases. A2B5: a surface antigen of oligodendrocytes precursor cells, A2B5 clone 105; ACTB: actin, beta; APC: an antibody to label mature oligodendrocytes, anti-adenomatous polyposis coli clone CC1; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG9A: autophagy related 9A; AU: arbitrary units; BafA1: bafilomycin A1; BCL2: B cell leukemia/lymphoma 2; BECN1: beclin 1, autophagy related; BNIP3: BCL2/adenovirus E1B interacting protein 3; BNIP3L/NIX: BCL2/adenovirus E1B interacting protein 3-like; CASP3: caspase 3; CNP: 2',3'-cyclic nucleotide 3'-phosphodiesterase; Ctl: control; COX8: cytochrome c oxidase subunit; CSPG4/NG2: chondroitin sulfate proteoglycan 4; DAPI: 4'6-diamino-2-phenylindole; DNM1L: dynamin 1-like; EGFP: enhanced green fluorescent protein; FACS: fluorescence-activated cell sorting; FIS1: fission, mitochondrial 1; FUNDC1: FUN14 domain containing 1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFAP: glial fibrillary growth factor; GFP: green fluorescent protein; HsESC: human embryonic stem cell; IEM: immunoelectron microscopy; LAMP1: lysosomal-associated membrane protein 1; LC3B: microtubule-associated protein 1 light chain 3; MBP: myelin basic protein; MFN2: mitofusin 2; Mito-Keima: mitochondria-targeted monomeric keima-red; Mito-GFP: mitochondria-green fluorescent protein; Mito-RFP: mitochondria-red fluorescent protein; MitoSOX: red mitochondrial superoxide probe; MKI67: antigen identified by monoclonal antibody Ki 67; MMP: mitochondrial membrane potential; O4: oligodendrocyte marker O4; OLIG2: oligodendrocyte transcription factor 2; ON: optic nerve; OPA1: OPA1, mitochondrial dynamin like GTPase; OPC: oligodendrocyte progenitor cell; PDL: poly-D-lysine; PINK1: PTEN induced putative kinase 1; PRKN/Parkin: parkin RBR E3 ubiquitin protein ligase; RFP: red fluorescent protein; RGC: retinal ganglion cell; ROS: reactive oxygen species; RT-PCR: real time polymerase chain reaction; SEM: standard error of the mean; SOD2: superoxide dismutase 2, mitochondrial; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TMRM: tetramethylrhodamine methyl ester; TOMM20: translocase of outer mitochondrial membrane 20; TUBB: tubulin, beta; TUBB3: tubulin, beta 3 class III.

摘要

少突胶质前体细胞源性的少突胶质谱系细胞的体外分离和培养及其向成熟少突胶质细胞的分化

相似文献

4
Mitochondria ROS and mitophagy in acute kidney injury.线粒体 ROS 和急性肾损伤中的自噬。
Autophagy. 2023 Feb;19(2):401-414. doi: 10.1080/15548627.2022.2084862. Epub 2022 Jun 9.
7
Autophagy regulates functional differentiation of mammary epithelial cells.自噬调控乳腺上皮细胞的功能分化。
Autophagy. 2021 Feb;17(2):420-438. doi: 10.1080/15548627.2020.1720427. Epub 2020 Feb 5.
10

引用本文的文献

1
Mitochondrial Quality Control in Health and Disease.健康与疾病中的线粒体质量控制
MedComm (2020). 2025 Aug 15;6(8):e70319. doi: 10.1002/mco2.70319. eCollection 2025 Aug.
4
Progress on multifunctional transmembrane protein ATG9A.多功能跨膜蛋白ATG9A的研究进展
Cell Commun Signal. 2025 Jul 1;23(1):314. doi: 10.1186/s12964-025-02317-6.
6
PTEN: a new dawn in Parkinson's disease treatment.PTEN:帕金森病治疗的新曙光。
Front Cell Neurosci. 2025 Mar 10;19:1497555. doi: 10.3389/fncel.2025.1497555. eCollection 2025.

本文引用的文献

1
Role of glia in optic nerve.胶质细胞在视神经中的作用。
Prog Retin Eye Res. 2021 Mar;81:100886. doi: 10.1016/j.preteyeres.2020.100886. Epub 2020 Aug 6.
3
Autophagy in Myelinating Glia.髓鞘形成胶质细胞中的自噬作用。
J Neurosci. 2020 Jan 8;40(2):256-266. doi: 10.1523/JNEUROSCI.1066-19.2019. Epub 2019 Nov 19.
7
Mitochondrial plasticity in cell fate regulation.线粒体在细胞命运调控中的可塑性。
J Biol Chem. 2019 Sep 20;294(38):13852-13863. doi: 10.1074/jbc.REV118.000828. Epub 2019 Aug 5.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验