Suppr超能文献

基于深度特征回归的三维血管分割。

Deep feature regression (DFR) for 3D vessel segmentation.

机构信息

Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, People's Republic of China.

出版信息

Phys Med Biol. 2019 May 23;64(11):115006. doi: 10.1088/1361-6560/ab0eee.

Abstract

The structural information of coronary arteries has important clinical value for quantitative diagnosis and treatment of coronary artery disease. In this study, a deep feature regression (DFR) method based on a convolutional regression network (CRN) and a stable point clustering mechanism for 3D vessel segmentation is proposed. First, the vessel model is constructed by a vessel section generator and a series of deviation parameter estimators. The generator provides 2D images for the training and prediction processes, while the estimators calculate pose parameters of an input vessel section. Second, estimators are trained by a series of CRNs, in which deep vessel features are automatically learned from 600 000 sample images. Third, we propose a stable point clustering mechanism that evaluates the reliability of the CRN estimation through iterative regression of vessel parameters. This mechanism eliminates the outliers, thereby increasing tracking robustness. Finally, we present a vessel segmentation algorithm using trained deviation parameter estimators. And, the termination criteria are designed based on both the number of stable points and an intensity constraint. The proposed method is evaluated on a public coronary artery data set. The average overlapping ratio and error are 97.5% and 0.27 mm, respectively. A quantitative test on a public cerebral artery data set demonstrates that the proposed DFR method tracks the vessel centerline with high accuracy, for which the average error is less than 0.33 mm.

摘要

冠状动脉的结构信息对冠状动脉疾病的定量诊断和治疗具有重要的临床价值。在这项研究中,提出了一种基于卷积回归网络(CRN)和稳定点聚类机制的深度特征回归(DFR)方法,用于三维血管分割。首先,通过血管截面生成器和一系列偏差参数估计器构建血管模型。生成器为训练和预测过程提供 2D 图像,而估计器计算输入血管截面的位姿参数。其次,通过一系列 CRN 训练估计器,从 60 万张样本图像中自动学习深度血管特征。第三,我们提出了一种稳定点聚类机制,通过对血管参数进行迭代回归来评估 CRN 估计的可靠性。该机制消除了异常值,从而提高了跟踪的鲁棒性。最后,我们提出了一种使用训练有素的偏差参数估计器的血管分割算法。并根据稳定点数和强度约束设计了终止准则。所提出的方法在公共冠状动脉数据集上进行了评估。平均重叠率和误差分别为 97.5%和 0.27mm。在公共脑动脉数据集上的定量测试表明,所提出的 DFR 方法能够以高精度跟踪血管中心线,平均误差小于 0.33mm。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验