Suppr超能文献

基于多阶段神经网络的冠状动脉 X 射线非标定血管造影图像三维重建方法。

A multi-stage neural network approach for coronary 3D reconstruction from uncalibrated X-ray angiography images.

机构信息

University of Michigan, 2800 Plymouth Road Building 20-210W, Ann Arbor, MI, 48109, USA.

出版信息

Sci Rep. 2023 Oct 16;13(1):17603. doi: 10.1038/s41598-023-44633-2.

Abstract

We present a multi-stage neural network approach for 3D reconstruction of coronary artery trees from uncalibrated 2D X-ray angiography images. This method uses several binarized images from different angles to reconstruct a 3D coronary tree without any knowledge of image acquisition parameters. The method consists of a single backbone network and separate stages for vessel centerline and radius reconstruction. The output is an analytical matrix representation of the coronary tree suitable for downstream applications such as hemodynamic modeling of local vessel narrowing (i.e., stenosis). The network was trained using a dataset of synthetic coronary trees from a vessel generator informed by both clinical image data and literature values on coronary anatomy. Our multi-stage network achieved sub-pixel accuracy in reconstructing vessel radius (RMSE = 0.16 ± 0.07 mm) and stenosis radius (MAE = 0.27 ± 0.18 mm), the most important feature used to inform diagnostic decisions. The network also led to 52% and 38% reduction in vessel centerline reconstruction errors compared to a single-stage network and projective geometry-based methods, respectively. Our method demonstrated robustness to overcome challenges such as vessel foreshortening or overlap in the input images. This work is an important step towards automated analysis of anatomic and functional disease severity in the coronary arteries.

摘要

我们提出了一种多阶段神经网络方法,用于从未经校准的二维 X 射线血管造影图像重建冠状动脉树的 3D 结构。该方法使用来自不同角度的多个二值化图像来重建 3D 冠状动脉树,而无需任何图像采集参数的知识。该方法由单个骨干网络和用于血管中心线和半径重建的单独阶段组成。输出是冠状动脉树的解析矩阵表示,适用于下游应用,例如局部血管狭窄(即狭窄)的血流动力学建模。该网络使用从血管生成器获得的合成冠状动脉树数据集进行训练,该生成器同时考虑了临床图像数据和冠状动脉解剖学的文献值。我们的多阶段网络在重建血管半径(均方根误差= 0.16 ± 0.07 毫米)和狭窄半径(平均绝对误差= 0.27 ± 0.18 毫米)方面达到了亚像素精度,这是用于告知诊断决策的最重要特征。与单阶段网络和基于射影几何的方法相比,该网络还分别将血管中心线重建误差降低了 52%和 38%。我们的方法表现出了克服输入图像中血管缩短或重叠等挑战的稳健性。这项工作是朝着自动分析冠状动脉解剖和功能疾病严重程度迈出的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ae/10579444/e6c2d7484666/41598_2023_44633_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验