Suppr超能文献

基于卷积神经网络的方向分类器的心脏 CT 血管造影中的冠状动脉中心线提取。

Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier.

机构信息

Image Sciences Institute, University Medical Center Utrecht & Utrecht University, Q.02.4.45, 3508, GA, Utrecht, P.O. Box 85500, The Netherlands.

Department of Radiology, University Medical Center Utrecht & Utrecht University, E.01.132, 3508, GA, Utrecht, P.O. Box 85500, The Netherlands.

出版信息

Med Image Anal. 2019 Jan;51:46-60. doi: 10.1016/j.media.2018.10.005. Epub 2018 Oct 22.

Abstract

Coronary artery centerline extraction in cardiac CT angiography (CCTA) images is a prerequisite for evaluation of stenoses and atherosclerotic plaque. In this work, we propose an algorithm that extracts coronary artery centerlines in CCTA using a convolutional neural network (CNN). In the proposed method, a 3D dilated CNN is trained to predict the most likely direction and radius of an artery at any given point in a CCTA image based on a local image patch. Starting from a single seed point placed manually or automatically anywhere in a coronary artery, a tracker follows the vessel centerline in two directions using the predictions of the CNN. Tracking is terminated when no direction can be identified with high certainty. The CNN is trained using manually annotated centerlines in training images. No image preprocessing is required, so that the process is guided solely by the local image values around the tracker's location. The CNN was trained using a training set consisting of 8 CCTA images with a total of 32 manually annotated centerlines provided in the MICCAI 2008 Coronary Artery Tracking Challenge (CAT08). Evaluation was performed within the CAT08 challenge using a test set consisting of 24 CCTA test images in which 96 centerlines were extracted. The extracted centerlines had an average overlap of 93.7% with manually annotated reference centerlines. Extracted centerline points were highly accurate, with an average distance of 0.21 mm to reference centerline points. Based on these results the method ranks third among 25 publicly evaluated methods in CAT08. In a second test set consisting of 50 CCTA scans acquired at our institution (UMCU), an expert placed 5448 markers in the coronary arteries, along with radius measurements. Each marker was used as a seed point to extract a single centerline, which was compared to the other markers placed by the expert. This showed strong correspondence between extracted centerlines and manually placed markers. In a third test set containing 36 CCTA scans from the MICCAI 2014 Challenge on Automatic Coronary Calcium Scoring (orCaScore), fully automatic seeding and centerline extraction was evaluated using a segment-wise analysis. This showed that the algorithm is able to fully-automatically extract on average 92% of clinically relevant coronary artery segments. Finally, the limits of agreement between reference and automatic artery radius measurements were found to be below the size of one voxel in both the CAT08 dataset and the UMCU dataset. Extraction of a centerline based on a single seed point required on average 0.4 ± 0.1 s and fully automatic coronary tree extraction required around 20 s. The proposed method is able to accurately and efficiently determine the direction and radius of coronary arteries based on information derived directly from the image data. The method can be trained with limited training data, and once trained allows fast automatic or interactive extraction of coronary artery trees from CCTA images.

摘要

在心脏 CT 血管造影 (CCTA) 图像中提取冠状动脉中心线是评估狭窄和动脉粥样硬化斑块的前提。在这项工作中,我们提出了一种使用卷积神经网络 (CNN) 提取 CCTA 中冠状动脉中心线的算法。在提出的方法中,训练了一个 3D 扩张 CNN,以便根据 CCTA 图像中局部图像块预测在任何给定点最可能的动脉方向和半径。从手动或自动放置在冠状动脉任意位置的单个种子点开始,跟踪器使用 CNN 的预测在两个方向上沿着血管中心线进行跟踪。当无法以高确定性确定方向时,跟踪结束。CNN 使用训练图像中手动注释的中心线进行训练。不需要图像预处理,因此该过程仅由跟踪器位置周围的本地图像值引导。CNN 使用由 8 个 CCTA 图像组成的训练集进行训练,该训练集共提供了 2008 年 MICCAI 冠状动脉跟踪挑战赛 (CAT08) 中手动注释的 32 条中心线。使用包含 24 个 CCTA 测试图像的测试集在 CAT08 挑战赛中进行评估,其中提取了 96 条中心线。提取的中心线与手动注释的参考中心线的平均重叠率为 93.7%。提取的中心线点非常准确,与参考中心线点的平均距离为 0.21 mm。基于这些结果,该方法在 CAT08 中的 25 种公开评估方法中排名第三。在由我们机构 (UMCU) 采集的 50 个 CCTA 扫描组成的第二个测试集中,专家在冠状动脉中放置了 5448 个标记,并测量了半径。每个标记都用作提取单个中心线的种子点,并将其与专家放置的其他标记进行比较。这表明提取的中心线与手动放置的标记之间具有很强的对应关系。在第三个包含 36 个来自 2014 年 MICCAI 自动冠状动脉钙评分挑战赛 (orCaScore) 的 CCTA 扫描的测试集中,使用分段分析评估了全自动种子和中心线提取。这表明该算法能够平均自动提取 92%的临床相关冠状动脉段。最后,发现 CAT08 数据集和 UMCU 数据集的参考和自动动脉半径测量之间的一致性界限小于一个体素的大小。基于单个种子点的中心线提取平均需要 0.4 ± 0.1 秒,而全自动冠状动脉树提取大约需要 20 秒。该方法能够基于直接从图像数据中得出的信息准确而有效地确定冠状动脉的方向和半径。该方法可以使用有限的训练数据进行训练,并且一旦训练完成,就可以从 CCTA 图像中快速自动或交互地提取冠状动脉树。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验