Baeuml Stephan W, Biechl Daniela, Wullimann Mario F
Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany.
Front Neuroanat. 2019 Feb 26;13:19. doi: 10.3389/fnana.2019.00019. eCollection 2019.
Signals issued by dorsal roof and ventral floor plates, respectively, underlie the major patterning process of dorsalization and ventralization during vertebrate neural tube development. The ventrally produced morphogen Sonic hedgehog (SHH) is crucial for vertebrate hindbrain and spinal motor neuron development. One diagnostic gene for motor neurons is the LIM/homeodomain gene , which has additional ventral expression domains extending into mid- and forebrain. In order to corroborate motor neuron development and, in particular, to improve on the identification of poorly documented zebrafish forebrain populations, we studied adult brains of transgenic -GFP zebrafish (3 and 6 months). This molecular neuroanatomical analysis was supported by immunostaining these brains for tyrosine hydroxylase (TH) or choline acetyltransferase (ChAT), respectively, revealing zebrafish catecholaminergic and cholinergic neurons. The present analysis of ChAT and -GFP label confirms ongoing adult expression of in zebrafish (basal plate) midbrain, hindbrain, and spinal motor neurons. In contrast, non-motor cholinergic systems lack expression. Additional presumed basal plate positive systems are described in detail, aided by TH staining which is particularly informative in the diencephalon. Finally, alar plate zebrafish forebrain systems with expression are described (i.e., thalamus, preoptic region, and subpallium). We conclude that adult zebrafish continue to express in the same brain systems as in the larva. Further, pending functional confirmation we hypothesize that the larval expression of () might causally underlie much of adult expression because it explains findings beyond ventrally located systems, for example regarding expression in the zona limitans intrathalamica and correlated -GFP expression in the thalamus.
在脊椎动物神经管发育过程中,分别由背侧顶板和腹侧底板发出的信号是背化和腹化主要模式形成过程的基础。腹侧产生的形态发生素音猬因子(SHH)对脊椎动物后脑和脊髓运动神经元的发育至关重要。运动神经元的一个诊断基因是LIM/同源结构域基因,它在中脑和前脑还有额外的腹侧表达结构域。为了证实运动神经元的发育,特别是为了改进对记录较少的斑马鱼前脑群体的识别,我们研究了转基因-GFP斑马鱼(3个月和6个月大)的成体脑。通过分别用酪氨酸羟化酶(TH)或胆碱乙酰转移酶(ChAT)对这些脑进行免疫染色来支持这种分子神经解剖学分析,从而揭示斑马鱼的儿茶酚胺能和胆碱能神经元。目前对ChAT和-GFP标记的分析证实了在斑马鱼(基板)中脑、后脑和脊髓运动神经元中存在持续的成体表达。相比之下,非运动胆碱能系统缺乏表达。借助于在间脑中特别有信息价值的TH染色,详细描述了其他推测的基板阳性系统。最后,描述了具有表达的斑马鱼前脑翼板系统(即丘脑、视前区和大脑皮层下核)。我们得出结论,成年斑马鱼在与幼虫相同的脑系统中继续表达。此外,在功能确认之前,我们假设幼虫期的表达()可能是成年期表达的许多原因,因为它解释了位于腹侧系统之外的发现,例如关于丘脑内界带中的表达以及丘脑中相关的-GFP表达。