Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0115, USA.
Mother Infant Research Institute, Tufts Medical Center, Boston, MA 02111, USA.
Comput Math Methods Med. 2019 Feb 4;2019:7496591. doi: 10.1155/2019/7496591. eCollection 2019.
: The emergence of the nonnutritive suck (NNS) pattern in preterm infants reflects the integrity of the brain and is used by clinicians in the neonatal intensive care unit (NICU) to assess feeding readiness and oromotor development. A critical need exists for an integrated software platform that provides NNS signal preprocessing, adaptive waveform discrimination, feature detection, and batch processing of big data sets across multiple NICU sites. Thus, the goal was to develop and describe a cross-platform graphical user interface (GUI) and terminal application known as NeoNNS for single and batch file time series and frequency-domain analyses of NNS compression pressure waveforms using analysis parameters derived from previous research on NNS dynamics. . NeoNNS was implemented with Python and the Tkinter GUI package. The NNS signal-processing pipeline included a low-pass filter, asymmetric regression baseline correction, NNS peak detection, and NNS burst classification. Data visualizations and parametric analyses included time- and frequency-domain view, NNS spatiotemporal index view, and feature cluster analysis to model oral feeding readiness. . 568 suck assessment files sampled from 30 extremely preterm infants were processed in the batch mode (<50 minutes) to generate time- and frequency-domain analyses of infant NNS pressure waveform data. NNS cycle discrimination and NNS burst classification yield quantification of NNS waveform features as a function of postmenstrual age. Hierarchical cluster analysis (based on the Tsfresh python package and NeoNNS) revealed the capability to label NNS records for feeding readiness. . NeoNNS provides a versatile software platform to rapidly quantify the dynamics of NNS development in time and frequency domains at cribside over repeated sessions for an individual baby or among large numbers of preterm infants at multiple hospital sites to support big data analytics. The hierarchical cluster feature analysis facilitates modeling of feeding readiness based on quantitative features of the NNS compression pressure waveform.
非营养性吸吮(NNS)模式在早产儿中的出现反映了大脑的完整性,临床医生在新生儿重症监护病房(NICU)中使用它来评估喂养准备情况和口腔运动发育。目前迫切需要一个集成的软件平台,该平台提供 NNS 信号预处理、自适应波形识别、特征检测以及在多个 NICU 站点对大数据集进行批处理。因此,目标是开发和描述一个跨平台图形用户界面(GUI)和终端应用程序,称为 NeoNNS,用于对 NNS 压缩压力波形进行单文件和批处理文件的时频分析,使用来自先前关于 NNS 动力学研究的分析参数。NeoNNS 是使用 Python 和 Tkinter GUI 包实现的。NNS 信号处理流水线包括低通滤波器、不对称回归基线校正、NNS 峰值检测和 NNS 爆发分类。数据可视化和参数分析包括时频域视图、NNS 时空指数视图和特征聚类分析,以对口腔喂养准备情况进行建模。从 30 名极早产儿中采样的 568 次吸吮评估文件以批处理模式(<50 分钟)进行处理,以生成婴儿 NNS 压力波形数据的时频域分析。NNS 周期识别和 NNS 爆发分类可量化 NNS 波形特征,作为胎龄后函数。层次聚类分析(基于 Tsfresh python 包和 NeoNNS)显示了对喂养准备情况进行 NNS 记录标记的能力。NeoNNS 提供了一个通用的软件平台,可在单个婴儿的多次重复会话或多个医院站点的大量早产儿中,快速量化 NNS 发展的时频域动态,以支持大数据分析。层次聚类特征分析有助于基于 NNS 压缩压力波形的定量特征对喂养准备情况进行建模。