Suppr超能文献

由一株……产生的胞外聚合物(EPS)对六价铬的还原作用 。 (你提供的原文似乎不完整,“a strain of ”后面缺少具体内容)

Cr(VI) reduction by an extracellular polymeric substance (EPS) produced from a strain of .

作者信息

Long Dongyan, Hashmi Muhammad Zaffar, Su Xiaomei, Pongpiachan Siwatt

机构信息

1College of Environmental and Natural Resource Sciences, Zhejiang University, Yuhangtang Road 388, Hangzhou, 310058 Zhejiang People's Republic of China.

Chaotianmen Sub-district Office, Yuzhong District, Chongqing, 400011 People's Republic of China.

出版信息

3 Biotech. 2019 Mar;9(3):111. doi: 10.1007/s13205-019-1641-8. Epub 2019 Feb 28.

Abstract

A better understanding of the Cr(VI) reduction position and mechanisms by a Cr(VI)-reducing strain is important for the bioremediation of Cr pollution in the environment. In the present study, we were interested in figuring out the role of extracellular polymeric substances (EPS) as the main area for Cr(VI) reduction in the newly reported strain of LY10. We investigated the subcellular distribution and reduction capability of each cellular component as the main area of Cr(VI) reduction by scanning electron microscopy and soft X-ray spectromicroscopy. The results suggested that most of Cr was presented in the supernatants as Cr(III) after reduction. In the cells, Cr was mostly distributed in the EPS and cell wall, while the EPS had the maximum Cr(VI) reduction rate (81.5%) as compared with the cell wall (30.1%). Soft X-ray spectromicroscopy analysis indicated that Cr accumulated more in the EPS. Therefore, the results suggested that the EPS were the main area for Cr(VI) reduction in the bacteria of LY10.

摘要

深入了解六价铬还原菌株对六价铬的还原位置和机制,对于环境中铬污染的生物修复至关重要。在本研究中,我们旨在弄清新报道的LY10菌株中细胞外聚合物(EPS)作为六价铬还原主要区域所起的作用。我们通过扫描电子显微镜和软X射线光谱显微镜研究了作为六价铬还原主要区域的每个细胞成分的亚细胞分布和还原能力。结果表明,还原后大部分铬以三价铬形式存在于上清液中。在细胞中,铬主要分布在EPS和细胞壁中,而与细胞壁(30.1%)相比,EPS具有最高的六价铬还原率(81.5%)。软X射线光谱显微镜分析表明,铬在EPS中积累更多。因此,结果表明EPS是LY10菌株中六价铬还原的主要区域。

相似文献

1
Cr(VI) reduction by an extracellular polymeric substance (EPS) produced from a strain of .
3 Biotech. 2019 Mar;9(3):111. doi: 10.1007/s13205-019-1641-8. Epub 2019 Feb 28.
2
Cr(VI) reduction by a potent novel alkaliphilic halotolerant strain Pseudochrobactrum saccharolyticum LY10.
J Hazard Mater. 2013 Jul 15;256-257:24-32. doi: 10.1016/j.jhazmat.2013.04.020. Epub 2013 Apr 20.
4
Bioreduction performance of Cr(VI) by microbial extracellular polymeric substances (EPS) and the overlooked role of tryptophan.
J Hazard Mater. 2022 Jul 5;433:128822. doi: 10.1016/j.jhazmat.2022.128822. Epub 2022 Mar 31.
5
Exploration on the bioreduction mechanism of Cr(Ⅵ) by a gram-positive bacterium: Pseudochrobactrum saccharolyticum W1.
Ecotoxicol Environ Saf. 2019 Nov 30;184:109636. doi: 10.1016/j.ecoenv.2019.109636. Epub 2019 Sep 16.
7
The dominant role of extracellular polymeric substances produced by Achromobacter xylosoxidans BP1 in Cr(VI) microbial reduction.
Sci Total Environ. 2024 Oct 15;947:174464. doi: 10.1016/j.scitotenv.2024.174464. Epub 2024 Jul 2.
8
Biofilm formation and extracellular polymeric substance (EPS) production by Bacillus haynesii and influence of hexavalent chromium.
Bioresour Technol. 2022 May;352:127109. doi: 10.1016/j.biortech.2022.127109. Epub 2022 Apr 1.
9
Mechanisms of Cr(VI) reduction by Bacillus sp. CRB-1, a novel Cr(VI)-reducing bacterium isolated from tannery activated sludge.
Ecotoxicol Environ Saf. 2019 Dec 30;186:109792. doi: 10.1016/j.ecoenv.2019.109792. Epub 2019 Oct 16.
10
Investigation on Cr(VI)-bioreduction mechanism and reduction products by a novel Microbacterium sp. strain NEAU-W11.
Chemosphere. 2023 Dec;343:140232. doi: 10.1016/j.chemosphere.2023.140232. Epub 2023 Sep 19.

引用本文的文献

4
Articulating the exuberant intricacies of bacterial exopolysaccharides to purge environmental pollutants.
Heliyon. 2021 Nov 22;7(11):e08446. doi: 10.1016/j.heliyon.2021.e08446. eCollection 2021 Nov.

本文引用的文献

1
Microbial reduction fate of chromium (Cr) in aqueous solution by mixed bacterial consortium.
Ecotoxicol Environ Saf. 2019 Apr 15;170:763-770. doi: 10.1016/j.ecoenv.2018.12.041. Epub 2018 Dec 21.
2
Removal of Cu(II) and Cr(VI) from wastewater by an amphoteric sorbent based on cellulose-rich biomass.
Carbohydr Polym. 2014 Oct 13;111:788-96. doi: 10.1016/j.carbpol.2014.05.043. Epub 2014 May 27.
3
Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria.
Bioresour Technol. 2014 Jul;163:374-6. doi: 10.1016/j.biortech.2014.04.073. Epub 2014 May 5.
4
Arsenic uptake by rice is influenced by microbe-mediated arsenic redox changes in the rhizosphere.
Environ Sci Technol. 2014 Jan 21;48(2):1001-7. doi: 10.1021/es403877s. Epub 2014 Jan 9.
5
Molecular mechanisms of Cr(VI) resistance in bacteria and fungi.
FEMS Microbiol Rev. 2014 Jul;38(4):633-59. doi: 10.1111/1574-6976.12051. Epub 2013 Dec 3.
6
Cr(VI) reduction by a potent novel alkaliphilic halotolerant strain Pseudochrobactrum saccharolyticum LY10.
J Hazard Mater. 2013 Jul 15;256-257:24-32. doi: 10.1016/j.jhazmat.2013.04.020. Epub 2013 Apr 20.
7
Extracellular polymeric substances from two biofilm forming Vibrio species: characterization and applications.
Carbohydr Polym. 2013 May 15;94(2):882-8. doi: 10.1016/j.carbpol.2013.02.010. Epub 2013 Feb 18.
8
Microbial extracellular polymeric substances: central elements in heavy metal bioremediation.
Indian J Microbiol. 2008 Mar;48(1):49-64. doi: 10.1007/s12088-008-0006-5. Epub 2008 May 1.
9
Cr(VI) uptake mechanism of Bacillus cereus.
Chemosphere. 2012 Apr;87(3):211-6. doi: 10.1016/j.chemosphere.2011.12.050. Epub 2012 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验