Suppr超能文献

使用深度循环神经网络的DNA隐写分析

DNA Steganalysis Using Deep Recurrent Neural Networks.

作者信息

Bae Ho, Lee Byunghan, Kwon Sunyoung, Yoon Sungroh

机构信息

Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea.

出版信息

Pac Symp Biocomput. 2019;24:88-99.

Abstract

Recent advances in next-generation sequencing technologies have facilitated the use of deoxyribonucleic acid (DNA) as a novel covert channels in steganography. There are various methods that exist in other domains to detect hidden messages in conventional covert channels. However, they have not been applied to DNA steganography. The current most common detection approaches, namely frequency analysis-based methods, often overlook important signals when directly applied to DNA steganography because those methods depend on the distribution of the number of sequence characters. To address this limitation, we propose a general sequence learning-based DNA steganalysis framework. The proposed approach learns the intrinsic distribution of coding and non-coding sequences and detects hidden messages by exploiting distribution variations after hiding these messages. Using deep recurrent neural networks (RNNs), our framework identifies the distribution variations by using the classification score to predict whether a sequence is to be a coding or non-coding sequence. We compare our proposed method to various existing methods and biological sequence analysis methods implemented on top of our framework. According to our experimental results, our approach delivers a robust detection performance compared to other tools.

摘要

下一代测序技术的最新进展推动了脱氧核糖核酸(DNA)在隐写术中作为一种新型隐蔽通道的应用。在其他领域存在各种检测传统隐蔽通道中隐藏信息的方法。然而,这些方法尚未应用于DNA隐写术。当前最常见的检测方法,即基于频率分析的方法,在直接应用于DNA隐写术时往往会忽略重要信号,因为这些方法依赖于序列字符数量的分布。为解决这一局限性,我们提出了一个基于序列学习的通用DNA隐写分析框架。所提出的方法学习编码和非编码序列的内在分布,并通过利用隐藏这些消息后的分布变化来检测隐藏消息。使用深度循环神经网络(RNN),我们的框架通过使用分类分数来预测一个序列是编码序列还是非编码序列,从而识别分布变化。我们将我们提出的方法与在我们的框架之上实现的各种现有方法和生物序列分析方法进行比较。根据我们的实验结果,与其他工具相比,我们的方法具有强大的检测性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验