Suppr超能文献

用于抵御统计隐写分析攻击的图像隐写技术:一项系统的文献综述

Image steganography techniques for resisting statistical steganalysis attacks: A systematic literature review.

作者信息

Apau Richard, Asante Michael, Twum Frimpong, Ben Hayfron-Acquah James, Peasah Kwame Ofosuhene

机构信息

Department of Computer Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana.

出版信息

PLoS One. 2024 Sep 16;19(9):e0308807. doi: 10.1371/journal.pone.0308807. eCollection 2024.

Abstract

Information hiding in images has gained popularity. As image steganography gains relevance, techniques for detecting hidden messages have emerged. Statistical steganalysis mechanisms detect the presence of hidden secret messages in images, rendering images a prime target for cyber-attacks. Also, studies examining image steganography techniques are limited. This paper aims to fill the existing gap in extant literature on image steganography schemes capable of resisting statistical steganalysis attacks, by providing a comprehensive systematic literature review. This will ensure image steganography researchers and data protection practitioners are updated on current trends in information security assurance mechanisms. The study sampled 125 articles from ACM Digital Library, IEEE Explore, Science Direct, and Wiley. Using PRISMA, articles were synthesized and analyzed using quantitative and qualitative methods. A comprehensive discussion on image steganography techniques in terms of their robustness against well-known universal statistical steganalysis attacks including Regular-Singular (RS) and Chi-Square (X2) are provided. Trends in publication, techniques and methods, performance evaluation metrics, and security impacts were discussed. Extensive comparisons were drawn among existing techniques to evaluate their merits and limitations. It was observed that Generative Adversarial Networks dominate image steganography techniques and have become the preferred method by scholars within the domain. Artificial intelligence-powered algorithms including Machine Learning, Deep Learning, Convolutional Neural Networks, and Genetic Algorithms are recently dominating image steganography research as they enhance security. The implication is that previously preferred traditional techniques such as LSB algorithms are receiving less attention. Future Research may consider emerging technologies like blockchain technology, artificial neural networks, and biometric and facial recognition technologies to improve the robustness and security capabilities of image steganography applications.

摘要

图像中的信息隐藏已越来越受欢迎。随着图像隐写术变得越发重要,检测隐藏消息的技术也应运而生。统计隐写分析机制可检测图像中隐藏的秘密消息,这使得图像成为网络攻击的主要目标。此外,研究图像隐写术技术的相关研究也较为有限。本文旨在通过提供全面系统的文献综述,填补现有关于能够抵御统计隐写分析攻击的图像隐写术方案的文献空白。这将确保图像隐写术研究人员和数据保护从业者了解信息安全保障机制的当前趋势。该研究从美国计算机协会数字图书馆、电气和电子工程师协会数据库、科学Direct和Wiley中抽取了125篇文章。使用PRISMA,采用定量和定性方法对文章进行综合和分析。本文就图像隐写术技术针对包括正则奇异(RS)和卡方(X2)在内的著名通用统计隐写分析攻击的鲁棒性进行了全面讨论。讨论了出版物的趋势、技术和方法、性能评估指标以及安全影响。对现有技术进行了广泛比较,以评估它们的优缺点。研究发现,生成对抗网络在图像隐写术技术中占主导地位,并已成为该领域学者的首选方法。包括机器学习、深度学习、卷积神经网络和遗传算法在内的人工智能驱动算法最近在图像隐写术研究中占据主导地位,因为它们增强了安全性。这意味着以前首选的传统技术,如最低有效位(LSB)算法,受到的关注越来越少。未来的研究可以考虑区块链技术、人工神经网络以及生物识别和面部识别技术等新兴技术,以提高图像隐写术应用的鲁棒性和安全能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/649a/11404826/d064696d044f/pone.0308807.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验